
www.manaraa.com

University of South Carolina
Scholar Commons

Theses and Dissertations

1-1-2011

3-D Computational Investigation of Viscoelastic
Biofilms using GPUs
Paisa Seeluangsawat
University of South Carolina - Columbia

Follow this and additional works at: https://scholarcommons.sc.edu/etd

Part of the Mathematics Commons

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized
administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.

Recommended Citation
Seeluangsawat, P.(2011). 3-D Computational Investigation of Viscoelastic Biofilms using GPUs. (Doctoral dissertation). Retrieved from
https://scholarcommons.sc.edu/etd/4648

https://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarcommons.sc.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/4648?utm_source=scholarcommons.sc.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu


www.manaraa.com

3-D COMPUTATIONAL INVESTIGATION OF VISCOELASTIC BIOFILMS USING GPUS

By

Paisa Seeluangsawat

Bachelor of Science
Massachusetts Institute of Technology 2002

Master of Science
University of North Texas 2006

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosphy in

Mathematics

College of Arts and Sciences

University of South Carolina

2011

Accepted by:

Qi Wang, Major Professor

Peter Binev, Committee Member

Hong Wang, Committee Member

Xiaofeng Yang, Committee Member

Guiren Wang, Committee Member

Lacy Ford, Vice Provost and Dean of Graduate Studies



www.manaraa.com

c© Copyright by Paisa Seeluangsawat, 2011

All Rights Reserved.

ii



www.manaraa.com

DEDICATION

This dissertation is dedicated to my mother–the best mother.

iii



www.manaraa.com

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my adviser Dr. Qi Wang, who has

guided me through the transition from classroom to research. He is always available for

discussion and regularly provides insights that turn a hard problem into a manageable one.

Without his patient support, this work would be impossible.

I also would like to thank Dr. Hong Wang, Dr. Peter Binev, Dr. Xiaofeng Yang, and

Dr. Guiren Wang for volunteering their time to be on my Dissertation Committee. Several

of them have also taught me tools and theorems that I use in this research.

I am indebted to all my teachers, both at USC and from prior. Their collective knowl-

edge and valuable advices play an integral role in shaping me into who I am.

I appreciate friendships from USC Math faculty, fellow graduate students, and the staff.

Together, they provide a home away from home, and help keep me sane through the ups

and downs of my graduate school life.

Last but not the least, I would like to thank Xiao Xiao for taking care of me when I do

not have time to take care of myself.

iv



www.manaraa.com

ABSTRACT

A biofilm is a slimy colony of bacteria and the materials they secrete, collectively called

“extracellular polymeric substances (EPS)”. The EPS consists mostly of bio-polymers,

which cross link into a network that behave viscoelastically under deformation. We pro-

pose a single-fluid multi-component phase field model of biofilms that captures this be-

havior, then use numerical simulations on GPUs to investigate the biofilm’s growth and its

hydrodynamics properties.

We model a biofilm immersed in a solution as a two-phase fluid, consisting of the

solution, which is modeled as a viscous fluid, and the biomass, which is modeled as a

viscoelastic solution with viscosity much higher than that of the solution. Each fluid has its

own velocity field, but the important quantity is their combined volume-averaged velocity,

which is the main physically observable quantity. The theory is developed with this average

velocity in mind, while tracking the individual velocities using the excessive velocity of

each fluid, which is calculated from the given mixing free energy density.

By using the phase field model, the whole domain is governed by a single set of govern-

ing equations, simplifying the numerical procedure significantly. The model accounts for

Cahn-Hilliard phase mixing and nucleation, biomass growth from nutrient consumption,

nutrient diffusion, fluid flow interaction, viscous stress due to bacteria and the solution,

and elastic stress due to the EPS.

We use a finite difference scheme based on a staggered grid in 2-D and 3-D geome-

try. The incompressible Navier-Stokes equation is solved by the Gauge-Uzawa method,

modified so that it can be quickly solved using Fast Fourier Transform (FFT). The elastic

stress is governed by a modified Giesekus constitutive equation valid trivially in the solvent
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region, which we solve by a backward interpolation and an explicit updating scheme. The

remaining equations are discretized using a semi-explicit scheme and solved iteratively by

the BiCG-stab method.

The numerical scheme is implemented on graphics processing units (GPUs), which

offers up to a hundred fold speed up over a traditional single-thread CPU. Our numerical

implementation is carried out such that only a small amount of key parameters are passed

between CPU and GPU, while large data are kept in GPU at all time in order to avoid the

relatively low bandwidth and high latency of the CPU-GPU data transfer. They are copied

to the CPU memory only occasionally in order to output to a file. Data are laid out in

the GPU memory in such a way that GPU threads can fetch them in a coalesced manner

to increase the speed of data access. We use the CUFFT package for the fast Fourier

transform, and the Thrust and CUSP libraries for BiCG-stab and data management.

We carry out numerical simulations in both two and three spatial dimensions. The vis-

coelastic results are compared with those from the viscous model at two distinct timescales

relevant to biomass growth and an imposed shear flow. In the growth timescale, mea-

sured in days, which is much longer than the elastic relaxation time, both models predict

nearly identical results. This is simply because the viscoelastic model behaves like a vis-

cous model since the elastic relaxation time is so short that the elastic effect is not felt

strongly at this time scale. In the shear timescale, measured in seconds, which is shorter

than the elastic relaxation time, the viscoelastic model predicts biofilms that deform under

shear more than those predicted by the viscous model. In 3-D, the viscoelastic model pre-

dicts that a portion of the biomass can be pulled into a nose shaped and stream along with

the flow. After the external shear ceases, the viscoelastic model predicts that the biofilms

partially recoil back toward their original position, while the viscous model predicts that

the biofilms stop moving. Nutrient distribution and its effect to biofilm growth is investi-

gated by the numerical solver revealing inherent hydrodynamic interaction in the material’s

transport. This hydrodynamic model together with the GPU based numerical codes pro-
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vide a valuable predicative tool for biofilm research, in particular, for the investigation of

biofilm-solution interaction under flowing conditions.
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CHAPTER 1

INTRODUCTION

1.1 BIOFILM

Biofilms are the slimy materials commonly found on moist surfaces. They are ubiqui-

tously found on plants and in river beds, kitchen sinks, water pipes, water filters, medical

implants, in body tissues, to name a few. A biofilm is a mixture of bacteria, the slimy

materials they produced, which are made up of polysaccharides, proteins, and other bio-

materials collectively called “extracellular polymeric substances” (EPS), and water. The

EPS harbors bacteria from surrounding environments, allowing them to communicate via

chemical signals and cooperate their self-defense against harsh chemicals. Many biofilms

are cooperative ecosystems of several species of bacteria, as well as fungi, algae, yeasts,

protozoa, and other microorganisms.

More information about biofilm can be found in the review articles [20] [11] [45].

We give a brief overview here. Figure.1.1 illustrates developmental stages of a biofilm

colony. Planktonic cells first attach to a surface, also called substratum. They then start

producing EPS and multiply their quantity. The biofilm colony grows as cells multiply

and more EPS are produced. Once matured, the colony releases planktonic cells, which

disperse on new substrate to form a new colony. Each stage in the figure is accompanied

by a photomicrograph of Pseudomonas aeruginosa, a model organism for biofilm study

[20] [74]. Biofilms can form layers with thickness that ranges from a few microns to a few

centimeters.

Under limited nutrient supplies, growth of biofilm colonies typically follows four dis-
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Figure 1.1: Left: Biofilm developmental stages. Each stage is illustrated by a drawing
(top) and a photo of a P. aeruginosa biofilm (bottom). (1) Planktonic cells land. (2) Cells
irreversibly attach to the site. (3) Cells start secreting EPS. (4) The biofilm grows into a
mature colony. (5) Some cells disperse back into the solution. (Figure by D. Davies in [62]
[40]) Right: a scanning electron micrograph (SEM) of P. aeruginosa (by Janice Haney Carr,
Centers for Disease Control and Prevention).

Figure 1.2: A closer look on the EPS. (a) Drawing of a biofilm colony. (b) The EPS
consists of polysaccharides, proteins, and DNA as major components. (c) The EPS is
stabilized by weak chemical forces and entanglement. (d) Extracellular enzyme lipase
using its positively charged amino acids (blue) to weakly bind to anions in an EPS strand.
(From Flemming & Wingender [20])

2
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tinctive phases [71] [66],

1. Lag phase. Organism undergoes phenotypic change to adapt to the environment and

produces necessary RNA and enzymes to get ready for cell division.

2. Exponential phase (also known as logarithmic phase). Cells multiplies (a.k.a. di-

vide), causing exponential growth. The growth rate depends on the species and en-

vironment. For example, the doubling time of P. aeruginosa is about 20 minutes in

mice lung [59] and 100 minutes in human lung [73]. On the other hand, T. pallidum

in rabbit testes takes about 30 hours to double [42].

3. Stationary phase. Nutrient starts to be scarce, and waste products accumulate. The

growth slows down, and is balanced out by the death rate.

4. Death phase. Nutrient diminishes.

Aside from lack of nutrient, cells can also die from drugs and harsh chemical treat-

ments. However, drugs do not affect all cells equally. Even within the same species, some

cells are more resistant to drugs than others. These are known as persistors. They neither

grow nor die in the presence of a specific drug. When the drug subsides, these persistors

divide again. However the rejuvenated colony does not inherit this persistence. They still

show the same level of susceptibility to the same drug [4] [37].

Inside the biofilm, cells are tangled inside the EPS network, greatly reducing their

mobility. This allows chemical gradient to develop, thus encourages cells inside biofilm

to specialize in different functions and benefit from each other. In an example from [67]

(Fig.1.3), cells on the EPS-solution interface specialize in efflux pump, which keep drug

out of the EPS while allowing nutrient to pass, while younger cells divide and grow in the

interior.

Several experiments study the hydrodynamics properties of biofilms [63] [61] [32] [56].

Phenomena commonly observed in flows include streaming, sloughing, detachment (shed-

3
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Figure 1.3: Cell specialization within a biofilm colony of S. cerevisiae. (A) Vertical cross
sections of the colony. (B) Zoom-in on an upper region and a root region, showing different
cell morphologies. The magnified regions are marked in A. (C) Spatial heterogeneity of
cells in the biofilm. The color bars mark regions with stationary cells (red), young nondi-
viding cells (blue), and dividing cells (green). Arrows mark examples of stationary cells
(red) and dividing cells (white). (D) Dividing cells in root tips. Arrows mark examples
of cells reaching a terminal phenotype. (E) Velcro-like interconnection between cells. (F)
Topology of the colony evolving over time, showing regions with dividing (green), early
stationary (yellow), stationary (red), and younger with no apparent division activity (blue)
cells. (From Vachova et al [67])

4
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ding), rolling, and viscoelastic recoil. Outside labs, biofilms have been studied in its natural

habitat such as river sediments [21] and rocks under river falls [29].

Key parameters of viscoelastic materials are the elastic modulus and relaxation time.

There is a wide range of the biofilm elastic shear modulus, from 10−2 to 105 Pa [57].

The value depends on the species of bacteria. Even within the same species, different

papers report values that differ by 1-2 order of magnitudes. This is partly because the

biofilm is a live heterogeneous material, thus its elasticity differs from specimen to speci-

men. Furthermore, chemical compositions of the environment can alter the strength of the

EPS [34]. Additionally, some discrepancy is attributed to the different measurement meth-

ods and the difficulties in interpreting the experimental results [1]. The relaxation time of

various species of biofilms are reported to be about 18 minutes [57]. However, a newer

measurement technique using a microfluidic device come up with the relaxation time of S.

epidermidis at 14 seconds [26]. This could be because a biofilm has multiple relaxation

times.

Biofilms can cause many industrial problems. They corrode surfaces, clog pipes, in-

crease fluid drag, and reduce heat transfer. They make surfaces harder to clean and disin-

fect, posing important risks in food processing and medical settings. Inside human body,

biofilms shield pathogens from antibiotics and the host’s immune system. Rather than

sparsely spreading out throughout the body, bacteria cooperate and thrive together inside

a biofilm. Detachment process allows a group of pathogens to migrate to a new location

together [24]. On the positive side, biofilms can be harnessed to some industrial benefits in

waste treatment, bio-barrier, and microbial fuel cells. A better understanding of biofilms

will not only provide scientific insights into the intriguing biomaterial system but also make

important economic impacts to the society.

5
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1.2 BIOFILM MODELS

It is a challenge to model the live microorganism in biofilms and their transient growth

and transport behavior. There have been many mathematical models for studying biofilms,

some dating back to early 1980’s. They differ in the phenomena of interest, key variables,

physical effect considered, and numerical methods. Recent reviews of these models include

[48], [16] [33] and [68].

The most commonly studied phenomena are growth at the expense of nutrient con-

sumption, and biomass movement. Other phenomena of interest are cell death, quorum

sensing, and phenotypic shift. These phenomena occur on different timescales,

• seconds: advection, diffusion, cell motility

• minutes: elasticity

• hours: phenotypic shift, cell division, nutrient consumption, death by drug

• days: colony growth, death by starvation

The set of phenomena we desire to capture partially dictates the list of key quantities that

we need to keep track of. The most common ones are representations of biomass, nutrient,

and their hydrodynamics. Other quantities include drug, signaling chemical, phenotypic

ratio, and elastic stress.

Biomass

A modeler may choose to keep track of the biomass as a single material entity [52] [13]

[27] [47], or separate them into two separate materials of distinct material’s properties:

bacteria and EPS parts [38]. More sophisticated models may keep track of several species

or several phenotypes of a specie [69] [51] [46]. Models differ in how these quantity

are represented. For example, the location and amount of biofilms in water have been

represented by these methods,

6
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• Location of biofilm-water interface [54] [69] [13]

• Cellular automata on a lattice [52] [28] [51]

• Individual bacteria in the continuum [35] [46]

• Scalar field of biofilm concentration [13] [17] [75] [76] [47]

A hybrid approach [50] [49] [47] is to represent the biomass as a concentration field, but

once the concentration reaches a threshold, the biomass spreads to adjacent cells using

cellular automation algorithm.

Nutrients, drugs, and other chemicals

While a biofilm growth might require several types of nutrient, it is typical to have one

nutrient that is the most essential, thus predominantly determines the enzymatic reaction

rate. Many numerical simulations pick this rate-limiting nutrient to be dissolved oxygen

(DO) [50] [49] [27] [47]. However, some models use a different rate-limiting nutrient such

as glucose [28]. Some models keep track of multiple nutrients [69] [35] [41] [46].

In addition to nutrient, some models incorporate drugs or harsh chemicals which inhibit

growth, kill bacteria, or erode the EPS [38]. Some allow bacteria to produce waste products

which might hamper growth or become a nutrient for other species [46]. Others yet include

a chemical signal that bacteria release as a part of quorum sensing. We will refer to these

components collectively as chemicals.

Chemicals are usually modeled as a scalar field of concentration, along with Fick’s

laws of diffusion [69] [50] [49] [13] [17] [52] [47]. For low nutrient concentration, an

alternative approach is to apply a diffusion-limited aggregation model [72] [65] [51], in

which each individual nutrient molecule does a random walk until it hits a biofilm and gets

consumed. This tends to produce biofilms that grow into fractal-like branches instead of a

round lump [39].

7
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In models where biomass and solutions can mix, there are two approaches in keeping

track of the chemicals,

• Chemicals exist in both biomass and solution. With the chemical concentration c per

volume and diffusion constant Ds, the diffusion equation is ∂c
∂t

= Ds∇2c.

• Chemicals exist only in the solution. If a chemical has dissolved concentration c

inside the solution of volume fraction φs, then its spatial concentration is cφs. The

appropriate diffusion equation is ∂cφs
∂t

= ∇ ·Dsφs(∇c).

Note that Ds can be modeled as a constant, or a function of concentrations c and φs.

The source of chemicals can also be modeled differently,

• Fixed concentration at the domain boundary [13] [17] [35] [41] [75] [76]. Thus

nutrient reaches the biomass by advection and diffusion.

• Fixed concentration at the biofilm-solution interface [69] [41]. This follows from the

assumption that the solution is well-mixed outside the biomass.

• Fixed concentration at the top biofilm height [46].

• Flux balance at the biofilm-solution interface [69], [52]. Let Dbulk and Dbiofilm be

the diffusion constants in the bulk fluid and inside biofilm respectively. Let L be the

width of diffusion layer. This condition is imposed at the interface,

Dbulk(cbulk − cinterface)/L = Dbiofilm
∂c

∂x

∣∣∣∣∣
interface

. (1.1)

• Fixed concentration in the inflow solution [53] [47].

• Fixed boundary flux [51].

• Chemicals produced inside the domain.

The choice of chemical sources partially determines the handling of boundary conditions.

The boundary condition of the bottom side depends on the substratum on which to model.

8
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• Impermeable (zero flux: ~n · ∇c = 0).

• Permeable. The boundary condition depends on specific settings.

• Reactive (c = 0).

Rate of growth/consumption

The rates of biofilm growth and nutrient consumption are often modeled by the Monod

equation rate = ratemaxc
K+c , where c is the nutrient concentration, ratemax is the maximum

consumption rate that can be a function of bacterial concentration, and K is a constant

known as the half saturation constant. The Monod model gives a nearly linear consumption

rate at small c and becomes independent of c as it is large. Note that Monod equation looks

exactly the same as Michaelis-Menten equation, thus hinting that enzyme kinetics underlies

the growth and consumption process.

If the biomass is represented by cellular automata, growth usually means increasing

the number of automata, representing cell division [52] [51]. If the model keeps track

of individual bacteria, each cell can grow in volume, shoving its neighbors aside, and

split into two smaller cells [35] [46]. If biomass is demarcated by biofilm-water interface,

growth is represented by increased biomass volume. The interface location can be directly

modified to account for additional volume [69]. Alternatively, the growth can modify local

pressure, which drives a flow that eventually expands the biomass volume [13]. If the

biomass is represented by a concentration field, growth can be represented by an increase

in concentration. In such model, one still needs a mechanism for the biomass to spread out

to neighboring regions. Otherwise, the regions that start off without biomass will continue

to have no biomass. This spreading can be done by ad-hoc diffusion [17], Cahn-Hilliard

dynamics [75] [76], or cellular automata rule [50] [49] [47].

Models can also account for death of bacteria, modeled as an ad-hoc decay [52] [51]

[41], killed by drugs , or death by starvation [17] [28] [27] [53].

9
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Hydrodynamics

Some models consider biofilm growth in static medium [69] [50] [49] [52] [51]. Such

models consider diffusion, but often ignore advection. When advection is considered, the

velocity field can be described by,

• One velocity field which convects everything [13].

• One velocity field for water. Biomass is assumed to be stationary [17].

• Separate velocity fields for water and biofilm [9] [10].

• One mass-averaged velocity field, together with excessive velocities vwater−vaverage

and vbiofilm − vaverage [75] [76] [38].

The velocity field is usually modeled by Darcy’s law [13] or the incompressible Navier-

Stokes equation [75] [76].

Other features

In many models, one can find an analytic solution or partial solution in one dimen-

sion. Higher spatial dimensions usually require numerical simulations. The advantage of

modeling in two spatial dimensions or higher lies in the ability to model heterogeneous

biofilm-solution surface. More importantly, it is close to the "real thing". Some phenom-

ena like channel flow requires a 3-D simulation. On the other hand, modeling in higher

dimensions incurs significantly more computational overhead.

Most simulations are done on a rectangular domain due to its simplicity. Some simula-

tions were carried out on more complicated domain using the finite element method [47].

Some authors incorporate a user interface so that their program can be used by other

people [18] [53] [70].
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1.3 VISCOELASTIC MODELS

There are many in-depth books on viscoelasticity, which sits at the intersection of rhe-

ology, polymer physics, and mechanical engineering, and chemical engineering. We give

a very brief overview here. For further details, please consult [5], [3], [8], [25]. Physical

theories behind these constitutive models are discussed in [15] and [14].

Viscosity is a generalization of friction. When two flat surfaces rub against each other

at a constant normal force, it experiences a friction force F = − const v. Both friction and

viscosity convert kinetic energy into heat. Elasticity is epitomized by a spring. When one

pulls a spring by a distance x away from the equilibrium, one experiences an elastic force

F = − const x. Elastic force converts kinetic energy to potential energy.

Viscoelastic materials exhibit both viscous and elastic behavior. Kinetic energy is con-

verted partly to potential energy and partly to heat. There are many viscoelastic models. In

1-D, the key variables are stress σ and strain ε. For linear models, the elastic component is

represented by a spring with constitutive equation σ = Eε where E is the elastic modulus.

The viscous component is represented by a dashpot with constitutive equation σ = η dε
dt

.

Dashpot and spring can be combined to form a viscoelastic model in several ways, as

shown in Table.1.1. Maxwell model accurately describes stress relaxation, while Kelvin-

Voigt better describes creep flows. Other models combined more dashpots and springs to

improve models’ accuracy, at the cost of increased parameters and mathematical complex-

ity. Linear models are suitable for small strain. At larger strain, materials can exhibit non-

linear damping or fracture. Alternatively, one can start with the general linear viscoelastic

model

σ(t) =
∫ t

−∞
G(t− t′)ε̇(t′)dt′ (1.2)

where ε̇ = dε
dt

and G : [0,∞) → R is called the relaxation modulus. When G(t) = ηδ(t)

where δ is the Dirac delta function, we get a viscous fluid σ = ηε̇. When G(t) = E is

a constant function, we recover the elastic model σ = Eε. For viscoelastic materials, we

11
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Table 1.1: Linear viscoelastic models (Diagrams by Wikipedia user Pekaje)

Model Schematic Constitutive equation

Maxwell
E dε

dt
= dεdashpot

dt
+ dεspring

dt
= σ

η
+ 1
E

dσ

dt

Kelvin-Voigt

E

σ = Eε+ η
dε

dt

Standard linear
solid

E1

E2

dε

dt
=

E2
η

(
η
E2

dσ
dt

+ σ − E1ε
)

E1 + E2

Generalized
Maxwell j21

k1 k2 kj

ke

σ = ∑n
j=1 σj,

σ1 = E1ε,

dε

dt
= σj
ηj

+ 1
Ej

dσj
dt
, for j = 2, · · · , n.

generally want the stress to be affected mostly by recent shear history. Thus we set G(t) to

be a decreasing function tending to zero, for example G(t) = Ee−t/λ.

Convected derivatives

Before we generalize these viscoelastic models into higher spatial dimensions, we first

have to learn about codeformational derivatives. Recall that, for any scalar field φ, the time

derivative ∂φ
∂t

in material frame can be converted into the Eulerian frame as the material

derivative Dφ
Dt

:= ∂φ
∂t

+ v · ∇φ. The extra term originates from the change in material’s

location due to the flow field v. In addition to this, the flow field also rotates and bends

the basis of the tensor. Scalar quantities don’t feel this, but tensor quantities do. Given

a basis that convects, rotates, and deforms along with the flow, the time derivative of a

second order contravariant tensor τ ij in that frame is translated into the Eulerian frame as

12
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the upper convected time derivative,

∇
τ := Dτ

Dt
− (∇v) · τ − τ · (∇v)T . (1.3)

Here (∇v)ij := dvi
dxj

. Some books define (∇v)ij differently as ∂ivj , thus gives
∇
τ= Dτ

Dt
−

(∇v)T · τ − τ · (∇v).

The time derivative of a second order covariant tensor τij in that frame translates into

Eulerian frame as the lower convected time derivative,

∆
τ := Dτ

Dt
+ (∇v)T · τ + τ · (∇v). (1.4)

Alternatively, one can think of
∆
τ as the time derivative of a contravariant tensor in a frame

whose dual basis deforms along with the flow.

We now define the Gordon-Schowalter convected derivative. This has one parameter

0 ≤ ξ ≤ 1 called slippage. Equivalently, some literature use a = 1− 2ξ, thus −1 ≤ a ≤ 1.

�
τ := dτ

dt
:= Dτ

Dt
+ ξ

∇
τ +(1− ξ) ∆

τ , (1.5)

= Dτ

Dt
− (∇v) · τ − τ · (∇v)T + ξ(D · τ + τ ·D), (1.6)

= Dτ

Dt
−W · τ + τ ·W− a(D · τ + τ ·D), (1.7)

where D and W are the rate-of-strain tensor and the vorticity tensor respectively,

D = 1
2[∇v +∇vT ], W = 1

2[∇v−∇vT ]. (1.8)

When ξ = 0 (a = 1) we recover
∇
τ . When ξ = 1 (a = −1) we recover

∆
τ . When ξ = 1

2

(a = 0) we have
�
τ= Dτ

Dt
−W·τ+τ ·W, which is called co-rotational derivative or Jaumann

derivative. It is the time-invariant derivative for second order tensors. This arises when the

basis rotates but does not deform along with the flow. By comparing (1.6) to (1.3), we can

see that
�
τ is equivalent to taking the upper convected derivative under the effective velocity

gradient∇v− ξD.

For quantities φ that have unit “per volume”, the material derivative is Dφ
Dt

+ v · ∇φ =
∂φ
∂t

+v·∇φ+φ∇·v = ∂φ
∂t

+∇·(vφ). Thus one often sees the term∇·(vφ) instead of v·∇φ

in fluid dynamics constitutive equations. The two are equivalent when v is divergence-free.
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Going from 1-D to 3-D

Imagine an infinitesimal cube of fluid, surrounded by fluid of the same type. As fluid

flows, neighboring fluid exerts forces on each face of the cube. This force is proportional

to surface area: dF = τ · ndS, where n is the unit external normal and dS is the surface

element. The quantity τ is called stress, which is a second order tensor. The angular

momentum balance implies that τ is a symmetric tensor. Divergence theorem yields the

force on the cube dF = (∇ · τ)dV . In continuum mechanics, the word “force” usually is a

shorthand for force density per volume f := dF
dV

= ∇ · τ .

The simplest model of liquid, known as incompressible Newtonian fluid, stipulates that

τ = 2ηD, where D = 1
2(∇v+∇vT ) is the rate-of-strain tensor and η is the fluid’s viscosity.

Assuming homogeneity in the viscosity η = const, and using of the incompressibility

condition∇ · v = 0, one can work out the viscous force,

f = ∇ · τ = η∇2v + η∇(∇ · v) = η∇2v (1.9)

The Maxwell constitutive equation from Table.1.1 can be rewritten as σ + λdσ
dt

= η dε
dt

,

where λ = η
E

is the relaxation time. This generalizes into higher spatial dimensions as

the upper convected Maxwell (UCM) model when we replace the time derivative by the

convective derivative for second order tensors

τ + λ
∇
τ= 2ηD, (1.10)

which is the key ingredient for several viscoelastic models. The commonly used single

relaxation time constitutive equation models are given below [5].

• Johnson-Segalman,

τ + λ
�
τ= 2ηD (1.11)

• Giesekus,
αλ

η
τ 2 + τ + λ

∇
τ= 2ηD, (1.12)

where α is an adjustable model parameter.
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• Phan-Thien-Tanner,

αλ

η
tr(τ)τ + τ + λ

∇
τ = 2ηD linear form (1.13)

τ exp(αλ
η
tr(τ)) + λ

∇
τ = 2ηD exponential form (1.14)

• White-Metzner

τ + λI2
∇
τ= 2ηI2D (1.15)

where I2 = 1
2(D : D − tr(D)2) is the second invariant of D. Incompressibility

yields tr(D) = 0, hence I2 = 1
2D : D = 1

2
∑
i

∑
j D2

ij .

When Gordon-Schowalter derivative is used, the slippage parameter a is usually set close

to 1, that is
�
τ≈∇τ . It is justified physically by assuming some slippage in the microscopic

network, causing them to travel at a different velocity than v but not far away from it.

If we assume that the total stress is a combination of UCM and Newtonian stress, we

have τ = τn + τps where τn + λ1
∇
τ= 2ηnD and τps = 2ηpsD. Then,

τ + λ1
∇
τ = 2(ηn + ηps)D + 2λ1ηps

∇
D (1.16)

Let η = ηn + ηps be the total viscosity. Let λ2 = λ1
ηps

ηn+ηps be the retardation time [5]. We

have,

τ + λ1
∇
τ = 2η(D + λ2

∇
D). (1.17)

This is known as convected Jeffreys model or Oldroyd’s fluid type B. Since ηn and ηps

are nonnegative, we have 0 ≤ λ2 < λ1. We recover the UCM model when λ2 = 0 and

Newtonian model when λ2 = λ1.

Let I be the identity. Notice that
�
I= 2aD. We define the conformation tensor c =

τ + η
aλ

I. Then the Johnson-Segalman model can be rewritten as,

c + λ
�c= η

aλ
I. (1.18)

Notice that if c is initially nonnegative definite, then it will stay nonnegative definite. This

reformulation of the Johnson-Segalman model will be exploited to design our numerical

method later.
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CHAPTER 2

BIOFILM MODEL

We model biofilms using a phase-field based hydrodynamic theory formulation, in

which the EPS production and nutrient consumption are effectively accounted for. We treat

the biofilm and the ambient fluid as a unified mixture system, in which the biomass, con-

sisted of the bacteria and EPS, is modeled collectively as the polymer solution phase; and

the other components, mainly solvent and nutrients, are effectively modeled as an effective

solvent phase. The effective solvent is modeled by a Newtonian fluid which is governed by

the incompressible Navier-Stokes equation.

The volume inside the mixture domain is divided into two components, the biomass

and the solution. A scalar field is introduced to keep track of their volume fraction at

each point in the domain. In the pure solvent region in the ambient fluid, the volume

fraction of the biomass vanishes. Each component has its own velocity field. However,

the boundary condition for each individual volocity field is hard to define and physically

measure. To circumvent this, we use a single fluid model, in which a single mass averaged

velocity serves as the only measurable macroscopic velocity while the individual velocities

are calculated from the intermixing fluxes.

Zhang, Cogan, and Wang [75] [76] have developed, analyzed and simulated such a

model in 1-D and 2-D viscous settings. Here, we extend this model to include elastic effect

and simulate it in both 2-D and 3-D.
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2.1 CONSTITUTIVE EQUATIONS

We model biofilms growing inside a tank of liquid solution. The scalar field φn denotes

the volume fraction of the biomass, which includes bacteria and EPS. Let φs denote the

volume fraction of the liquid solution. We have φn + φs = 1, thus only one of the volume

fractions needs to be tracked. Let c denote the nutrient concentration level, which floats

only inside the solution. Thus, its density per volume is cφs.

Let v be the average velocity, and p be the hydrostatic pressure. The phase field theory

for biofilms consists of four sets of equations.

Momentum and continuity equation

ρ
Dv
Dt

= ∇ · (aτn + φnτps + φsτs)− [∇p+ γ1kBT∇ · (∇φn∇φn)] ,

∇ · v = 0.
(2.1)

Here, ρ = φnρn + φsρs is the effective material density for the fluid mixture, where ρn

and ρs are the densities for the biomass and the solvent respectively. The extra stress in the

solvent is φsτs. In the biomass, there is a viscoelastic stress aτn due to the EPS polymer

network and a viscous stress φnτps due to the bacteria. The constant a is the slip coefficient

in the Giesekus model. There is no φn in front of τn because we already fold that biomass

volume fraction term into τn for the reason explained in Section 3.3.

The remaining term is due to the extended Flory-Huggin’s mixing free energy density

given by,

f = γ1

2 kT |∇φn|
2+γ2kT

[
φn
N

ln(φn + ε) + (1− φn) ln(1− φn) + χφn(1− φn)
]
, (2.2)

where kB is the Boltzmann constant, T is the absolute temperature, γ1 is a parameter mea-

sures the strength of the conformation entropy and γ2 is the strength of the bulk mixing

free energy. We note that γ2 is proportional to the reciprocal of the volume of the solvent

molecule. N is an extended polymerization index for the biomass, χ is the mixing param-

eter, and ε = 10−12 is a small dimensionless parameter used to regularize the potential in

the pure solvent region.
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Transport equation for the volume fraction of the polymer network

∂φn
∂t

+∇ · (φnv) = ∇ ·
[
λφn∇

δf

δφn

]
+ gn, (2.3)

where λ is the mobility parameter. The polymer network production rate is given by a

modified Michaelis-Menton kinetics,

gn = µφn
c

kc + c

(
φn

φn + φmin

)(
1− φn

φmax

)
with φmin = 0.01 and φmax = 0.20 (2.4)

where µ is the maximum production rate, kc is the half-saturation constant. The purpose

of φmin is to cap the growth of biomass in the very dilute limit. This represents either stray

EPS or planktonic bacteria, neither of which produce EPS. Without the φmin term, diluted

biomass can outgrow the main buds of the biofilm since it floats closer to the nutrient

feeding boundary. The φmax term stops the growth once the biomass get very dense. Both

are model parameters and can be calibrated through well controlled experiments. The

transport equation is a modified or singular Cahn-Hilliard equation with a biomass volume

fraction dependent mobility λ. For simplicity, we use a constant λ. In general, it should be

proportional to φs = 1 − φn. However, ψs is always greater than φn in biofilms. So, the

current assumption on λ works fine.

Transport equation for the nutrient

∂

∂t
(φsc) +∇ · (cvφs −Dsφs∇c) = −gc, (2.5)

where c is the nutrient concentration and the nutrient consumption rate is given by

gc = Aφn
c

k1 + c
. (2.6)

A is the maximum consumption rate, k1 is the half saturation rate, and Ds is the diffusion

constant for the nutrient substrate. Again a Michealis-Menton kinetic is assumed for the

decay of the nutrient due to biomass consumption.

Constitutive equations for stress tensors
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We model the stress as a sum of three components: viscous stress due to the bacteria

φnτps, viscous stress due to the solution φsτs, and viscoelastic stress due to the EPS network

τn = φnτ̃n. The first two parts are modelled as Newtonian fluid,

τps = 2ηpsDn, τs = 2ηsDs, (2.7)

The elastic stress is modeled by the Giesekus constitutive equation (1.12),

�
τ̃n +α

η
τ̃ 2
n + τ̃n

λ1
= 2ηn

λ1
Dn. (2.8)

The viscosity coefficients ηn, ηps and ηs are for EPS, bacteria, and solvent respectively.

Recall that λ1 is the relaxation time, 0 ≤ α ≤ 1 is the mobility parameter, and a is the slip

coefficient. A direct calculation of τ̃n will lead to a big loss in numerical accuracy, as will

be explained in Section3.3. Thus we opt to keep track of the quantity τn = φnτ̃n instead.

Use the fact that ∂φn
∂t

+ ∇ · (vnφn) ≈ g̃nφn where g̃n = gn
φn

. The Giesekus constitutive

equation becomes,

�
τn + α

φnηn
τ 2
n + τn

λ1
= g̃nτn + 2φnηn

λ1
Dn. (2.9)

Expanding the Gordon-Schowalter convected derivative yields,

∂τn
∂t

+∇·(vnτn)−Wn·τn+τn·Wn−a(Dn·τn+τn·Dn)+ α

φnηn
τ 2
n+ τn

λ1
= g̃nτn+2φnηn

λ1
Dn.

(2.10)

The infinite relaxation time limit λ1 →∞ yields the pure elastic theory. In this model,

we assume the EPS and bacteria are transported by the same velocity. The biomass velocity

is defined by

vn = v− λ∇ δf

δφn
, (2.11)

which is identified from the transport equation for φn. Analogously, we can identify the

solvent velocity as

vs = v + λφn
φs
∇ δf

δφn
. (2.12)
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The rate of deformation tensor and the vorticity tensor with respect to the average velocity

are given by

D = 1
2[∇v +∇vT ], W = 1

2[∇v−∇vT ]. (2.13)

Dn,Wn,Ds,Ws are defined analogously by using vn and vs.

We investigate the dynamics of the biofilm in both 2 and 3 space dimensions. In 2-D,

the domain is (x, y) ∈ Ω = [0, Lx]× [0, Ly]. The x direction is periodic. In y direction, we

impose no-flux boundary conditions.

[cvsφs −Dsφs∇c] · n|y=0 = 0,

∇φn · n|y=0,Ly = 0,[
vφn − λ∇

δf

δφn

]
· n|y=0,Ly = 0,

v|y=0 = 0, v|y=Ly = v0.

(2.14)

At the top of the domain, the flow velocity v0 is specified for shearing flows. We also im-

pose a nutrient feeding condition c|y=Ly = c∗ in place of the zero-flux condition there. Our

3-D domain is similar, but has an extra dimension with the periodic boundary condition.

2.2 NONDIMENSIONALIZATION

We use a characteristic time scale t0 and length scale h to nondimensionalize the vari-

ables

t̃ = t

t0
, x̃ = x

h
, ṽ = vt0

h
, τ̃ = τ t20

ρ0h2 , p̃ = p t20
ρ0h2 , c̃ = c

c0
, (2.15)

where c0 is a characteristic substrate concentration. The length scale h is determined by

the computational geometry while the time scale is done by either the growth time scale of

the biofilm or the flow induced time scale. The following dimensionless equations arise

Λ = λρ0
t0
, Γ1 = γ1kT t20

ρ0h4 , Γ2 = γ2kT t20
ρ0h2 ,

Res = ρ0h2

ηst0
, Ren = ρ0h2

ηnt0
, Reps = ρ0h2

ηpst0
, ρ̃ = φs

ρs
ρ0

+ φn
ρn
ρ0
,

D̃s = Dst0
h2 , Ã = At0

c0
, µ̃ = µt0, K̃c = kc

c0
, K̃1 = k1

c0
, Λ1 = λ1

t0
,

(2.16)
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where Ren, Reps and Res are the Reynolds numbers for the EPS, bacteria, and solvent

flow respectively. The constant ρ0 is an averaged density, Λ1 is the Deborah number. We

use the extended Newtonian model for the polymeric stress tensor, and the singular Cahn-

Hilliard equation for the biomass volume fraction. For simplicity, we drop the ˜ on the

dimensionless variables and the parameters. The system of governing equations for the

viscoelastic biofilm in these dimensionless variables is given by,

ρ
dv
dt

= ∇ · (aφnτn + φnτps + φsτs)− [∇p+ Γ1∇ · (∇φn∇φn)], (2.17)

∇ · (v) = 0, (2.18)

∂φn
∂t

+∇ · (φnv) = ∇ · (Λφn∇
δf

δφn
) + gn, (2.19)

∂

∂t
(φsc) +∇ · (cvsφs −Dsφs∇c) = −gc. (2.20)

where

gn = µφnc

kc + c

(
φn

φn + φmin

)(
1− φn

φmax

)
, gc = Aφnc

K1 + c
, (2.21)

∂τn
∂t

+∇ · (vnτn)−Wn · τn + τn ·Wn − a(Dn · τn + τn ·Dn)

+ τn
Λ1

+ αRenτ
2
n

φn
= g̃nτn + 2φ

Λ1Ren
Dn,

(2.22)

τs = 2
Res

Ds, τps = 2
Reps

Dn. (2.23)

The mixing free energy density is now given by

f = Γ1

2 |∇φn|
2 + Γ2

[
φn
N

ln(φn + ε) + (1− φn) ln(1− φn) + χφn(1− φn)
]
, (2.24)
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which yields the following component of the excessive network velocity,

∇ δf

δφn
= ∇

(
∂f

∂φ
−∇ · ( ∂f

∂φx
,
∂f

∂φy
,
∂f

∂φz
)
)

(2.25)

= ∇
(
−Γ1∇2φn + Γ2

( 1
N

ln(φn + ε)− ln(1− φn)− 2χφn + 1
N
− 1 + χ

))
(2.26)

= −Γ1∇(∇2φn) + Γ2

(
1
N

1
φn + ε

+ 1
1− φn

− 2χ
)
∇φn. (2.27)

2.3 REMARK ABOUT THE STRESS CONSTITUTIVE EQUATION

We introduce a new stress tensor

τp = τn +BiφnI where Bi = ηn
aΛ1

. (2.28)

The constitutive equation for the new elastic stress tensor becomes,

∂τp
∂t

+∇· (vnτp)−
(
∂φn
∂t

+∇ · (vnφn)
)
BiI−Wn · τp + τp ·Wn−a(Dn · τp + τp ·Dn)

+ αRen
φn

(τp −BiφnI)2 + 1
Λ1

(τp −BiφnI) = g̃n (τp −BiφnI) (2.29)

Note that
(
∂φn
∂t

+∇ · (vn∇φn)
)

= g̃nφn. This let us cancel out two terms and are left with,

∂τp
∂t

+∇ · (vnτp)−Wn · τp + τp ·Wn − a(Dn · τp + τp ·Dn)

+ αRen
φn

(τp −BiφnI)2 + 1
Λ1

(τp −BiφnI) = g̃nτp. (2.30)

At any time t, we can approximate the constitutive equation by a difference equation

up to O(∆t2),

τp(x, t+ ∆t)−Biφn(x, t+ ∆t)I =
[(
I + ((a+ 1)

2 ∇vn + (a− 1)
2 ∇vTn )∆t

)

· τp(x− vn(x, t)∆t, t) ·
(
I + ((a+ 1)

2 ∇vn + (a− 1)
2 ∇vTn )T∆t

)

−Biφn(x, t+ ∆t)I
]
e
−∆t

Λ1 − αRen
φn

(τp(x, t)−BiφnI)2 ∆t

− (∇ · vn)τp∆t+ g̃nτp∆t+O(∆t2). (2.31)
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Alternatively, we have the difference equation in another form,

τp(x, t+ ∆t)−Biφn(x, t+ ∆t)I =
[(
I + ((a+ 1)

2 ∇vn + (a− 1)
2 ∇vTn )∆t

)

· τp(x− vn(x, t)∆t, t) ·
(
I + ((a+ 1)

2 ∇vn + (a− 1)
2 ∇vTn )T∆t

)
e
−∆t

Λ1
+
∫ t+∆t
t

(g̃n−∇·vn)dt

−Biφn(x, t+ ∆t)Ie−
∆t
Λ1

]
− αRen

φn
(τp(x, t)−BiφnI)2 ∆t+O(∆t2). (2.32)

If we take the derivative of the equation with respect to ∆t and evaluate it at ∆t = 0, we

recover the Giesekus equation. This difference equation will be the basis for us to design

the numerical method to solve the Giesekus equation coupled with the momentum trans-

port. These difference equations are in fact the result of conducting first order backward

differencing of the convected derivative along the streamline. For comparison purpose, we

also conduct simulations where we replace vn by the average velocity v in the Giesekus

constitutive equation.

To avoid the singularity in the damping term, numerically in our simulations, we replace

αRen
φn

(τp −BiφnI)2 by αRen
max(εφ,φn) (τp −BiφnI)2, where εφ is a numerical parameter. A

smaller εφ will make the equation stiffer, necessitating a smaller time step ∆t. To run at a

practical time step, we use εφ = 10−2 − 10−3.

This adjustment reduces the damping effect in the region where φn < εφ by a factor

of εφ/φn. In regions where φn � εφ, the model provides almost no damping at all, even

though Sec.3.3 shows that these are the regions where damping is most needed. To com-

pensate for it, we let the stress decay quickly in those regions by reducing the relaxation

time, Λ1(~x, t) := Λ1
(

φn
φn+εφ

)2
. Since this numerical modification of the constitutive equa-

tion occurs in the region with dilute EPS, it should not effect the overall biomass dynamics.

We note that the elastic contribution to the force can be calculated from either τp or τn

since F = ∇ · τn = ∇ · (τp−BiφnI) = ∇ · τp−Bi∇φn. The last term is a potential force,

which can be absorbed into the pressure.
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CHAPTER 3

NUMERICAL SCHEMES AND GPU IMPLEMENTATION

3.1 NUMERICAL SCHEME

We use the finite difference method to solve the coupled flow, the phase field equation,

the elastic stress constitutive equation, and the nutrient transport equation. We solve the

coupled momentum transport equation and the continuity equation using a Uzawa-Gauge

scheme developed by Guermond et al. [23]. In order to apply the fast Fourier transform

(FFT), the momentum transport equation is rewritten as,

ρ( ∂
∂t

v + v · ∇v)− 1
Rea
∇2v = −∇p+ R − 1

Rea
∇2v, (3.1)

with,

R = −Γ1∇2φn∇φn +∇ · (aτn + φnτps + φsτs), (3.2)

where Rea is an averaged Reynolds number. Our choice of Rea will be discussed later in

this section.

We use a uniform time step ∆t. For simplicity, the second order extrapolation of any

function f in time is denoted by fn+1 = 2fn − fn−1. We calculate v and the pressure in

three steps.

Step 1:

ρn+1[3un+1 − 4vn + vn−1

2∆t ] + ρn+1vn+1 · ∇vn+1 + 1
2(∇ · (ρn+1vn+1))vn+1

+ 1
Res
∇sn − 1

Rea
∇2un+1 = Rn+1 − 1

Rea
∇2vn+1−ε

,

un+1|y=0 = 0, un+1|y=Ly = v0.

(3.3)
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Step 2: We implement the projection step by solving a Poisson equation with the Neumann

boundary condition: 
−∇ · ( 1

ρn+1∇ψn+1) = ∇ · un+1,

∂ψn+1

∂n
|y=0,H = 0.

(3.4)

Step 3: We correct the velocity, pressure and the auxiliary variable s.
vn+1 = un+1 + 1

ρn+1∇ψn+1,

sn+1 = sn −∇ · un+1.

(3.5)

Here s0 = 0 and v1, s1, φ1
n, c

1 are computed by a first order scheme. Note that (3.3)

and (3.4) can be solved quickly by FFT, as explained in section A. Most terms in (3.3) are

the temporally second order discretization of (3.1) at step n+ 1. The pressure scheme and

the term 1
Rea
∇2vn+1−ε

are kept first order in time due to stability reasons, which we will

discuss in section 3.2. We use ε = 0.05. The pressure does not show up explicitly in the

scheme, but can be approximated by pn+1 = −3ψn+1

2∆t + 1
Res

sn+1.

The phase field equation for the biomass volume fraction φn is discretized by

3φn+1
n − 4φnn + φn−1

n

2∆t + vn+1 · ∇φn+1
n = gn+1

n + Λ∇ ·
− Γ1φn

n+1∇(∇2φn+1
n )

+ Γ2φn
n+1

 1
N(φn

n+1 + ε)
+ 1

1− φn
n+1 − 2χ

∇φn+1
n

. (3.6)

The substrate concentration transport equation is discretized by

3φn+1
s cn+1 − 4φns cn + φn−1

s cn−1

2∆t + vn+1 · ∇(cn+1φn+1
s ) = gn+1

c +∇ · (Dsφ
n+1
s ∇cn+1).

(3.7)

Both φn and c are solved after the velocity is updated. Since these equations are coupled

through the forcing terms, they are supposed to be solved simultaneously. However, we

could decouple them by solving one in front of the other. In this case, we first solve the

equation for φn in which the nutrient concentrated is extrapolated to n + 1 time step and

then we solve for c.
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When shearing, the Peclet number is very high. Thus, we advect φn in a separate step

by WENO, and then couple the result with the phasefield equation through a first-order

operator splitting method,

φ∗n = WENO(φnn,vn,vn+1) (3.8)

φn+1
n − φ∗n

∆t = gn+1
n + Λ∇ ·

− Γ1φ
∗
n∇(∇2φn+1

n ) (3.9)

+ Γ2φ
∗
n

(
1

N(φ∗n + ε) + 1
1− φ∗n

− 2χ
)
∇φn+1

n

. (3.10)

The WENO step uses the third-order TVD Runge-Kutta time discretization,

φ(1)
n = φnn + ∆tL(φnn,vn) (3.11)

φ(2)
n = 3

4φ
n
n + 1

4φ
(1)
n + 1

4∆tL(φ(1)
n ,vn+1) (3.12)

φ∗n = 1
3φ

n
n + 2

3φ
(2)
n + 2

3∆tL(φ(2)
n ,

vn + vn+1

2 ), (3.13)

where L(φn,v) ≈ −∇ · (vφn) is an evaluation of the advection term. We use the third-

order WENO scheme. For clarity, we first describe the discretization for a 1-D advection in

x direction, given by (Lx(φn, vx))i = − 1
∆x

(
(φnvx)i+ 1

2
− (φnvx)i− 1

2

)
. The numerical flux

(φnvx)i+ 1
2

= ω1
ω1+ω2

(φnvx)(1)
n,i+ 1

2
+ ω2

ω1+ω2
(φnvx)(2)

n,i+ 1
2

is a weighted average of two second-

order accurate fluxes, discretized on two different stencils. In regions where vx ≥ 0, they

are given by,

(φnvx)(1)
n,i+ 1

2
= −1

2(φnvx)i−1 + 3
2(φnvx)i, (φnvx)(2)

n,i+ 1
2

= 1
2(φnvx)i + 1

2(φnvx)i+1.

(3.14)

The nonlinear weights are ωk = γk
(ε+βk)2 for k = 1, 2, where ε = 10−6 and the linear weights

γ1 = 1
3 and γ2 = 2

3 . The smoothness indicators are given by

β1 = ((φnvx)i − (φnvx)i−1)2 , β2 = ((φnvx)i+1 − (φnvx)i)2 . (3.15)

In regions where vx < 0, the extrapolated numerical flux (φnvx)(1)
i+ 1

2
and the smoothness

indicator β1 are replaced by a similar extrapolation but from gridpoints i+ 1 and i+ 2. For
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Figure 3.1: Variable locations on the 2-D staggered grid

the advection in higher spatial dimensions, we use the operator addition schemeL(φn,v) =

Lx(φn, vx) + Ly(φn, vy) + Lz(φn, vz).

We assume that the difference between the solvent density and the biomass density is

negligible. Then, the density of the solvent and the polymer network are set to be the same;

thus ρn is in fact a constant. The averaged Reynolds number Rea is computed by

1
Rea

= a
φnmax
Ren

+ φnmax
Reps

+ (1− φnmax)
Res

. (3.16)

where φnmax = max{φnn,i,j | 1 ≤ i ≤ Mx, 1 ≤ j ≤ My}. Thus Rea is a constant at each

time step tn, but varies with time.

For spatial discretization, we use a uniform staggered grid. Its two dimensional version

is depicted in Fig.3.1. The computation domain Ω = [0, Lx]×[0, Ly] is divided into uniform

cells of size ∆x = Lx/Mx, ∆y = Ly/My. Values of φn, c, p are located at cell centers.

For example cni,j denotes the value of the numerical solution of the nutrient equation (3.7)

at time n∆t at the point (xi, yj) :=
(
(i− 1

2)∆x, (j − 1
2)∆y

)
for i = 1, · · · ,Mx and j =

1, · · · ,My.

The velocity v = (vx, vy) is discretized at the center of cell surfaces as follows,

vx,ij = vx(xi + ∆x
2 , yj) vy,ij = vy(xi, yj + ∆y

2 ) i = 0, · · · ,Mx; j = 0, · · · ,My.

(3.17)

For the elastic stress, the normal components τxx and τyy are discretized at cell centers,
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e.g., τxx,ij = τxx(xi, yj). The shear components are discretized at cell corners,

τxy,ij = τxy

(
xi + ∆x

2 , yj + ∆y
2

)
. (3.18)

At the top and bottom boundaries y = Ly, 0 we have a no-flux boundary condition

v · n|0,Ly = 0. The boundary conditions for φn and c given by (2.14) become

∇c · n|y=0,Ly = 0, ∇φn · n|y=0,Ly = 0, ∇ δf

δφn
· n|y=0,Ly = 0. (3.19)

The discrete forms of the boundary conditions are handled by introducing ghost cells right

outside the boundaries. The conditions (3.19) translate into,

φnn,i,1 = φnn,i,0, φnn,i,2 = φnn,i,−1, φnn,i,My+1 = φnn,i,My
, φnn,i,My+2 = φnn,i,My−1, (3.20)

cni,1 = cni,0, cni,My+1 = cni,My
, for i = 1, · · · ,Mx. (3.21)

The spatial discretizations for φn and c are done using central differences to ensure at least

second order accuracy in space.

The numerical method for the elastic stress (2.31) is discretized in first order both tem-

porally and spatially, given by the following three steps.

1. τ ∗p,ij = τnp (xij − vnn,ij∆t) interpolated linearly.

2. τ ∗∗p,ij =
(
I + ( (a+1)

2 (∇vn)nij + (a−1)
2 (∇vn)nTij )∆t

)
· τ ∗p,ij·(

I + ( (a+1)
2 (∇vn)nij + (a−1)

2 (∇vn)nTij )T∆t
)
.

3. τn+1
p,ij =

τ∗∗
p,ije

− ∆t
Λ1 +BiφnI

(
1−e

− ∆t
Λ1

)
−αRen
φn+1
n

∆t(τnp,ij−Biφn+1
n I)2

1−g̃n+1
n ∆t+∇·vn∆t

or alternatively

τn+1
p,ij = τ ∗∗p,ije

−∆t
Λ1

+ 1
2 (g̃nn+g̃n+1

n −∇·vnn−∇·v
n+1
n )∆t

+Biφn+1
n I

(
1− e−

∆t
Λ1

)
− αRen

φn+1
n

∆t
(
τnp,ij −Biφn+1

n I
)2

All second order tensors such as τ ∗p,ij , τ
∗∗
p,ij , (∇vn)ij have their components discretized

at the same locations as τp,ij . The interpolation in step (1) is done using the four nearest grid
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points. For example, given a, b ∈ (0, 1), the four nearest grid points of τnp,xy(a∆x, b∆y)

are at points (0, 0), (0,∆y), (∆x, 0) and (∆x,∆y). We use the interpolation,

τnp (a∆x, b∆y) = (1− a)(1− b)τ(0, 0) + (1− a)bτnp (0,∆y)

+ a(1− b)τnp (∆x, 0) + abτnp (∆x,∆y). (3.22)

Note that τp does not need an explicit boundary condition at y = 0, Ly since the backward

interpolation along the characteristic line always falls within the domain. The evaluation

of the damping term
(
τnp,ij −Biφn+1

n I
)2

requires values from various components of τn,

which locates at different grid locations. When a value is needed outside its native grid

location, we use the average of the values from the nearest neighbors. If the point in

question lies on the boundary y = 0, Ly, we average only among the nearest neighbors

which lie within the domain.

The effective equation of this numerical scheme for τp is,

∂τp
∂t

+∇·(vnτp)+(1−∆t
Λ1

)
[
−Wn · τp + τp ·Wn − a[Dn · τp − τp ·DT

n ] + 1
Λ1

(τp −BiφI)
]

− ∆t
Λ1

vn · ∇τp + ∆t(∇ · vn)∂τp
∂t

+ ∆t
2
∂2τp
∂t2

+ ∆t
(
(∇vn)(vn · ∇τp) + (vn · ∇τp)(∇vn)T − (∇vn)τp(∇vn)T

)
= g̃n(τp + ∆t∂τp

∂t
)− αRen

φn
(τp −BiφnI)2 + vn∆x

2 ∇2τp +O(∆x2,∆t2,∆t∆x) (3.23)

As can be seen from (2.31), (2.32) and the scheme itself, τp should be non-negative

definite if a > 0 and the initial value τp(x, 0) is everywhere positive definite. This property

can be used to partially check the validity of the code. Note, in contrast, that τn is generally

not positive definite.

Numerically, the non-negative definiteness of τp holds only when all components of

τp are computed at the same grid lattice. When components of τp are not co-located, the

smallest eigenvalue λmin might become a little negative in some region. This is easy to

occur since λmin � λmax, thus a small truncation error during the advection of the big

eigen component can substantially affect the small eigen component.

29



www.manaraa.com

3.2 MOMENTUM EQUATION

During the implementation of the momentum equation, we encountered some unantic-

ipated numerical issues. We discuss them here so that those who wish to reproduce this

work can be aware of these subtleties.

Our numerical scheme (3.3)(3.4)(3.5) for the incompressible Navier-Stokes equation

(2.1) is based on the Gauge-Uzawa method. A comprehensive overview of that method

is given in [23]. It has been extended to cover the case of variable density and viscosity

in [58]. For a constant density, the temporally first order numerical scheme is,

ρn+1
(

un+1 − vn

∆t

)
+ ρnvn · ∇un+1

+ 1
2(∇ · (ρnvn))un+1 + ηpres∇sn = Fn

CH + Fn
stress

un+1|y=0 = 0, un+1|y=Ly = v0.

(3.24)


−∇ · ( 1

ρn+1∇ψn+1) = ∇ · un+1,

∂ψn+1

∂n
|y=0,H = 0.

(3.25)


vn+1 = un+1 + 1

ρn+1∇ψn+1,

sn+1 = sn −∇ · un+1.

(3.26)

Pressure does not show up explicitly in the scheme, but can be recovered by pn+1 =

−ψn+1

∆t + ηpress
n+1. The temporally second order numerical scheme is,

ρn+1
(

3un+1 − 4vn + vn−1

2∆t

)
+ ρn+1vn+1 · ∇un+1

+ 1
2(∇ · (ρn+1vn+1))un+1 +∇pn + ηpres∇sn = Fn+1

CH + Fn+1
stress

un+1|y=0 = 0, un+1|y=Ly = v0.

(3.27)


−∇ · ( 1

ρn+1∇ψn+1) = ∇ · un+1,

∂ψn+1

∂n
|y=0,H = 0.

(3.28)
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vn+1 = un+1 + 1
ρn+1∇ψn+1,

sn+1 = sn −∇ · un+1.

pn+1 = pn − 3ψn+1

2∆t + ηpress
n+1.

(3.29)

The scheme (3.3)(3.4)(3.5) that we use is a hybrid of the temporally first and second order

scheme. To minize truncation errors, we discretize most terms to the second order. How-

ever, we use the first order pressure correction scheme (3.24)(3.25)(3.26), for a stability

reason that will be discussed in Lemma 3.2.1.

Note that [58] uses ηpres = min η = ηs. The term FCH is the force due to Cahn-Hilliard

dynamics, and Fstress is the force due to stress. These forces in our model differ from those

in [58]. In our model, they are given by,

FCH = −∇ · (Γ1∇φn∇φn) (3.30)

Fstress = ∇ · (aτn + φnτn + φsτs) (3.31)

τn is discussed in Sec. 3.3 (3.32)

τps = 2ηpsDn, Dn = 1
2[∇vn +∇vTn ], vn = v− λ∇ δf

δφn
, (3.33)

τs = 2ηsDs, Ds = 1
2[∇vs +∇vTs ], vs = v + λφn

φs
∇ δf

δφn
. (3.34)

The scheme given above needs a few modifications to be applicable to our need. Most

of these are necessitated by the high viscosity variation in our model ηn+ηps
ηs
∼ 104 − 105,

and the relatively big timestep ∆t� ρ
η
(∆x)2. This assumption for ∆t is required in order

for our computation to finish in a reasonable amount of time. To put this timestep size in

perspective, recall that the stability condition for forward-time central-space scheme for

Navier-Stokes equation is ∆t < 1
2
ρ
η
(∆x)2.

One issue we notice is that, in the second order pressure correction scheme, the pressure

terms p and swould oscillate over time. This oscillation usually does not cause a noticeable

problem. However, once in a while, it can spiral out of hand and cause the simulation to

blow up. We track the issue back to this lemma,
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Lemma 3.2.1. If the viscosity variation is very high (η � ηpres), and timestep ∆t �
ρ
η
(∆x)2, then the scheme given by (3.27)(3.28)(3.29) can show an oscillatory behavior.

Proof. Consider the case of 1-D periodic domain Ω = [0, 2π], with constant density ρ

and constant viscosity η such that η � ηpres. The incompressibility condition yields that

vn(x) = 0. We perform a stability analysis on the remaining variables. For any given

wave number k ∈ Z, let sn(x) = Sneikx, pn(x) = P neikx, un(x) = Uneikx where

Sn, P n, Un ∈ C. Then, (3.27) becomes,

∇(pn + ηpress
n) = η∇2u− 3ρ

2∆tu
n+1 (3.35)

ik(P n + ηpresS
n) =

(
−ηk2 − 3ρ

2∆t

)
Un+1 (3.36)

(3.28) and the first equation in (3.29) yields,

ψn+1 = − ρ

ik
un+1 (3.37)

The last two equations in (3.29) yield,

Sn+1 = Sn − ikUn+1 (3.38)

P n+1 = P n − 3
2∆t(−

ρ

ik
)Un+1 + ηpresS

n+1 (3.39)

Then substitute in Un+1 from (3.36), we get

Sn+1 = Sn − k2

ηk2 + 3ρ
2∆t

(P n + ηpresS
n) (3.40)

P n+1 = P n − 1
ηk2 2∆t

3ρ + 1
(P n + ηpresS

n) + ηpresS
n+1 (3.41)

For high wave numbers (k ≈ 1
∆x ), the timestep assumption ∆t � ρ

η
(∆x)2 yields that

ηk2 � 3ρ
2∆t . Therefore, k2

ηk2+ 3ρ
2∆t
≈ 1

η
and 1

ηk2 2∆t
3ρ +1 ≈ 0. We are left with,

Sn+1 ≈ Sn − 1
η

(P n + ηpresS
n) (3.42)

P n+1 ≈ P n + ηpresS
n+1 (3.43)
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Let Qn = P n/ηpres and ε = ηpres/η,

Sn+1 ≈ Sn − ε(Qn + Sn) (3.44)

Qn+1 ≈ Qn + Sn+1 (3.45)

Thus, Sn+1

Qn+1

 =

1− ε −ε

1− ε 1− ε


Sn
Qn

 (3.46)

The characteristic polynomial of the matrix is ((1− ε)− λ)2 +(1− ε)ε = 0. The eigenval-

ues are λ = 1− ε± i
√
ε(1− ε) ≈ e−

ε
2±i
√
ε. Thus P n ≈ e(− ε2±i

√
ε)nP 0. Since

√
ε� ε

2 , we

expect P n, and thus the pressure, to decay slowly and exhibit an oscillatory behavior.

We will encounter this kind of behavior again. So it’s worth pointing out that for 0 <

λ � ω, the function f(t) = e(−λ+iω)t represents a damped oscillation in which the decay

is much slower than the oscillation. Though analytically stable, its governing equation

is hyperbolic. Solving this by the straight forward time marching method often leads to

instability.

Since pressure oscillation occurs when η/ηpres is small, we are tempted to set ηpres to a

big value, for example let ηpres = max η. However, this will lead to another instability.

Lemma 3.2.2. If ∆t� ηmin
ηmax

and ηpres � 1
∆tηmin, then the scheme is unstable.

Proof. We observe this behavior in our numerical experiment for both first-order and

second-order scheme. Here, we give a proof only for the case of first-order scheme.

The timestep precondition implies that there is a point ~x in which 1
∆tηmin � η(~x) <

ηpres = ηmax. In a small region around ~x, we perturb the Gauge variable sn by a small

amount δsn. The choice 1
∆tηmin � η(~x) allows us to neglect the inertia term in (3.27). The

leading terms become ηpres∇sn ≈ η∇2un+1. Thus, the perturbation δsn causes a small

divergent flow δun+1. This is taken care of by the projection step: sn+1 = sn −∇ · δun+1.
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Thus,

∇sn+1 = ∇sn −∇(∇ · δun+1) = ∇sn −∇2δun+1 −∇×∇× δun+1 (3.47)

≈ ∇sn − ηpres
η
∇δsn −∇×∇× δun+1 (3.48)

≈ ∇sn − ηpres
η
∇δsn (3.49)

Thus ‖∇δs‖ grows by a factor of ηpres
η

> 1. Therefore, the system is unstable when

1
∆tηmin � ηpres.

Note that the timestep precondition is relevent to biofilm simulations, which usually

have ηmin
ηmax

∼ 10−4 − 10−6 while ∆t ∼ 10−3. Thus, we must choose ηpres that is not too

big. Note that [58] uses ηpres = ηmin, which satisfies this stability requirement. We also

adopt this value.

Converting the momentum equation into a Helmholtz equation

Solving (3.27) by an iterative method such as BiCG-stab is a slow process. To speed

up the computation, we subtract both sides of the equation by ηa∇2v to get (3.1), which

we later formulate as a Helmholtz equation in (3.3). Such equation can be quickly solved

using fast Fourier transform, as described in Appendix A. This speed up comes at a cost,

as shown in the following analysis.

We consider a simple setting with no Cahn-Hilliard dynamics, EPS growth, nor elastic

stress. The only forces in the Navier-Stokes equations are the viscous force and pressure.

Consider a 2-D domain where all quantities are constant over x direction but vary in y.

That is, φ(t, x, y) = φ(t, y). In this setting, any incompressible flow must have the form

vx(t, x, y) = vx(t, y) and vy(x, y) = 0. We call this a 1-D flow in 2-D domain. It is

illustrated in Fig.3.4. In such setting, the advection term is zero v · ∇v = 0, and the

viscous force ∇ · (η∇v) has no y component. Thus if we start with zero initial pressure

p0 = s0 = 0, the solution of the momentum equation (3.27) will have no y component,
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thus it is divergence-free∇ · u0(t, y) = 0. The pressure correction steps (3.28) (3.29) then

yield ψ1 = p1 = s1 = 0. By induction, we get that ψn = pn = sn = 0 at all time steps.

Hence, vn = un.

For ease of analysis, we now focus on a region where η is constant. This let us simplify

the viscous term ∇ · (η∇v) = η∇2v + (∇η) · (∇∇v) = η∇2v. Thus, (3.27) can be

rewritten as,

ρ

(
vn+1 − vn

∆t

)
− ηn+1

a ∇2vn+1 = ηn∇2vn − ηn+1
a ∇2vn 1st order

(3.50)

ρ

(
3vn+1 − 4vn + vn−1

2∆t

)
− ηn+1

a ∇2vn+1 = η∇2vn+1 − ηn+1
a ∇2vn+1

2nd order

(3.51)

vn+1|y=0 = 0, vn+1|y=Ly = vshear. (3.52)

We want to use the 2nd order scheme since it has a lower truncation error. However,

this scheme turns out to be unstable. To find out the cause, we analyze (3.50), (3.51),

and related equations in the absence of shear, vshear = 0. Since v has no y component,

there is no advection in y direction. Thus the EPS concentration is constant over time

φ(t, y) = φ(y). Therefore, η and ηa are also constant over time. We first analyze the 2nd

order scheme, starting from (3.51) and then Taylor expands v temporally at step n,

ρ

(
3vn+1 − 4vn + vn−1

2∆t

)
− ηa∇2vn+1 = η∇2(2vn − vn−1)− ηa∇2(2vn − vn−1)

(3.53)

ρ

(
3vn+1 − 4vn + vn−1

2∆t

)
− ηa∆t2∇2

(
vn+1 − 2vn + vn−1

∆t2

)
= η∇2(2vn − vn−1)

(3.54)

ρ (vt + ∆tvtt)− ηa∆t2∇2vtt = η∇2(v + ∆tvt + ∆t2
2 vtt) +O(∆t2) (3.55)

Although one normally drops the ∆t2 in such analysis, we cannot do that here. While
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growing biofilms, the values of these parameters are ρ = 1, ηa = 108, ηs = 103,∆t = 10−3.

Thus the term ηa∆t2 is even bigger than the O(1) term! We perform a stability analysis

with the ansatz v = eiky+λt,

ρ(λ+ ∆tλ2)− ηa∆t2(−k2)λ2 = η(−k2)(1 + ∆tλ+ ∆t2
2 λ2) (3.56)(

ηa∆t2 + η
∆t2
2 + ρ

k2 ∆t
)
λ2 +

(
η∆t+ ρ

k2

)
λ+ η = 0 (3.57)

In the solution region, for k = 1 we have λ = −0.010 ± 3.16i. For k = 100 we have,

λ = −0.005±3.16i. Since |reλ| � |im λ|, this system decays slowly and shows oscillatory

behavior. As mentioned earlier, such system is numerically unstable. It often causes the

simulation to blow up. Note that such behavior is a numerical artifact from having the

timestep ∆t too large. In the limit ∆t → 0, the system yields a quick decay for all wave

number λ = −103k2. However, getting into this stable region requires an impractically

small timestep.

We next analyze the 1st order scheme. Start from (3.50) and then Taylor expands v

temporally at step n+ 1
2 ,

ρ

(
vn+1 − vn

∆t

)
− ηa∆t∇2

(
vn+1 − vn

∆t

)
= η∇2vn (3.58)

ρvt − ηa∆t∇2
(

vt + ∆t2
24 vttt

)
= η∇2v− ∆t

2 η∇2vt +O(∆t2) (3.59)

(
ρvt −∆t ηa∇2vt

)
− ηa∆t3

24 ∇2vttt = η∇2v− ∆t
2 η∇2vt +O(∆t2) (3.60)

We again perform the stability analysis with the ansatz v = eiky+λt. If we ignore the ηa∆t3

term, we get,

λ
(
ρ− ηa∆t (−k2)

)
= η(−k2)− ∆t

2 λη(−k2) (3.61)

λ

(
ρ+ ηa∆t k2 − ∆t

2 ηk2
)

= −ηk2 (3.62)

λ
(
ρ

k2 + ∆t
(
ηa −

η

2

))
= −η (3.63)

λ = − η
ρ
k2 + ∆t(ηa − η

2) ≈ −10−2 in the solution region (3.64)
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Thus, the velocity dissipates as slowly as in the 2nd order scheme. The good news is that

λ no longer have the complex part. Thus, here we do not have the oscillatory behavior that

destabilized our earlier scheme.

Despite its stability, the very slow decay rate poses a nontrivial problem. Compare to

the true decay rate λ = −η k2

ρ
= −103 k2, we are off by a factor of 105k2. Its effect is easily

noticable when the shear rate vshear suddenly changes. During a sudden onset of shear,

this slow decay causes too much advection inside the EPS, creating unnaturally high strain

and hence a very large elastic stress. During a sudden stop of the shear, this slow decay

rate causes an unnatural flow reversal in the purely viscous model.

If we keep the ηa∆t3 term in (3.60), we get,

λ

(
ρ+ ηa∆t k2 − ∆t

2 ηk2
)

+ λ3ηa∆t3k2

24 = −ηk2 (3.65)

λ
(
ρ

k2 + ∆t
(
ηa −

η

2

))
+ λ3ηa∆t3

24 = −η (3.66)

This yields λ ≈ −10−2, 0.005± 4900i. The complex roots deserve some comment. They

have a positive real part, which normally indicates instability. However, their temporal

frequency is much higher than our nyquist rate (4900 ∆t � 1). Thus their modes don’t

directly show up in our simulation. Thus our simulation is still stable.

Since both 1st and 2nd order scheme yield unsatisfactory results, we search for a better

scheme. We try a 3rd order scheme interpolation of the ηa∇2vn+1
term. We analyze this

scheme by Taylor expanding v at step n− 1
2 ,

ρ
(

3vn+1−4vn+vn−1

2∆t

)
− ηa∇2vn+1 = η∇2(2vn − vn−1)− ηa∇2(3vn − 3vn−1 + vn−2)

(3.67)

ρ
(

3vn+1−4vn+vn−1

2∆t

)
− ηa∆t3∇2

(
vn+1−3vn+3vn−1−vn−2

∆t3
)

= η∇2(2vn − vn−1) (3.68)

ρ
(

vt + 3
2∆tvtt

)
− ηa∆t3∇2vttt = η∇2(v + 3

2∆tvt + ∆t2
8 vtt) +O(∆t2) (3.69)
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Stability analysis with the ansatz v = eiky+λt yields,

ρ(λ+ 3
2∆tλ2)− ηa∆t3(−k2)λ3 = η(−k2)(1 + 3

2∆tλ+ ∆t2
8 λ2) (3.70)(

ηa∆t3
)
λ3 +

(
η

∆t2
8 + 3

2
ρ

k2 ∆t
)
λ2 +

(3
2η∆t+ ρ

k2

)
λ+ η = 0 (3.71)

In the solution region, for k = 1 we have λ = −21.16, 10.57 ± 18.99i. For k = 100 we

have, λ = −21.31, 10.66± 18.86i. This is unstable since some λ has a positive real part.

The difficulty we face in 1st and 2nd order scheme has a similar flavor to the behavior

of the successive over-relaxation (SOR) method. In SOR, there is an adjustable parameter

ω. The system typically converges slowly at ω = 1 and oscillates unstably at ω = 2. In that

scheme, the user picks a value ω ∈ [1, 2) in order to speed up convergence. This inspires us

to try an interpolation to step n + 1− ε, for some ε > 0. We replace ηa∇2vn+1
in (3.51)

by ηa∇2vn+1−ε := ηa∇2 (vn + (1− ε)(vn − vn−1)) + O(∆t2). We analyze this scheme

by Taylor expanding v at step n,

ρ

(
3vn+1 − 4vn + vn−1

2∆t

)
− ηa∇2vn+1

= η∇2(2vn − vn−1)− ηa∇2((2− ε)vn − (1− ε)vn−1) (3.72)

ρ

(
3vn+1 − 4vn + vn−1

2∆t

)
− ηa∆t2∇2

(
vn+1 − 2vn + vn−1

∆t2

)

= η∇2(2vn − vn−1) + εηa∇2(vn − vn−1) (3.73)

ρ (vt + ∆tvtt)− ηa∆t2∇2vtt

= η∇2(v + ∆tvt + ∆t2
2 vtt) + εηa∇2(∆tvt −

∆t2
2 vtt + ∆t3

6 vttt) +O(∆t2)

(3.74)

As before, we keep the terms ηa∆t3 and η∆t2 since they are much bigger than ∆t2. Plug
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ε λ for ηa = 108

.1 −5.7e4 −105 −0.10

.01 −6.0e5 −8.9 −1.12

.007 −8.5e5 −5.06 −1.98

.005 −1.2e6 −2.5± 1.92i

.003 −2.0e6 −1.5± 2.78i

.001 −6.0e6 −.51± 3.12i

.0001 −6.0e7 −.055± 3.16i

ε λ for ηa = 1.5× 106

.2 −2.7e4 −221 −3.4

.1 −5.7e4 −99 −7.1

.07 −8.3e4 −62 −11.1

.05 −1.2e5 −26.0± 2.95i

.03 −2.0e5 −15.6± 20.84i

.01 −6.0e5 −5.36± 25.32i

.001 −6.0e6 −0.83± 25.81i

Table 3.1: Decay rate of the n+ 1− ε interpolation scheme

in the ansatz v = eiky+λt, we get,

ρ(λ+ ∆tλ2)− ηa∆t2(−k2)λ2

= η(−k2)(1 + ∆tλ+ ∆t2
2 λ2) + εηa(−k2)(∆tλ− ∆t2

2 λ2 + ∆t3
6 λ3) (3.75)

εηa
∆t3
6 λ3 +

(
(1− ε

2)ηa∆t2 + η
∆t2
2 + ρ

k2 ∆t
)
λ2 +

(
(εηa + η)∆t+ ρ

k2

)
λ+ η = 0

(3.76)

For the parameters we use, the decay rate λ doesn’t depend much on the wave number k.

We look for an ε that will give us a favorable decay rate. Table.3.1 show the result of a

parameter study. For a hard biofilm ηa = 108 the optimal value of ε is roughly 0.006. This

brings the decay rate to an acceptable value λ = −106,−3.02±+0.96i. This is a factor of

300 improvement over both the 1st and 2nd order scheme. Note that the optimal value of

ε depends on parameter ηa. For a softer biofilm ηa = 1.5 × 106, the optimal value of ε is

roughly ε = .05.

The previous method is essentially a 1st order scheme with one free parameter. This

inspires us to try a 2nd order sheme with one degree of freedom. Let ηa∇2vn+1 =

ηa∇2 (2vn − vn−1 + c(vn − 2vn−1 + vn−2)). This interpolation is 3rd order when c = 1

and second order for any c such that |c| � 1
∆t . We Taylor expands v at step n.

ρ
(

3vn+1−4vn+vn−1

2∆t

)
− ηa∇2vn+1

= η∇2(2vn − vn−1)− ηa∇2(2vn − vn−1)− cηa∇2(vn − 2vn−1 + vn−2) (3.77)
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Figure 3.2: Solution of Eq.(3.81). The real part of each λ is plotted as a function of c.

ρ
(

3vn+1−4vn+vn−1

2∆t

)
− ηa∆t2∇2

(
vn+1−2vn+vn−1

∆t2
)

= η∇2(2vn − vn−1)− cηa∆t2∇2
(

vn−2vn−1+vn−2

∆t2
)

(3.78)

ρ (vt + ∆tvtt)− ηa∆t2∇2vtt + cηa∆t2∇2 (vtt −∆tvttt)

= η∇2(v + ∆tvt + ∆t2
2 vtt) +O(∆t2) (3.79)

With the ansatz v = eiky+λt, we get,

ρ(λ+ ∆tλ2)− (1− c)ηa∆t2(−k2)λ2 − cηa∆t3(−k2)λ3 = η(−k2)(1 + ∆tλ+ ∆t2
2 λ2)

(3.80)

cηa∆t3λ3 +
(

(1− c)ηa∆t2 + η
∆t2
2 + ρ

k2 ∆t
)
λ2 +

(
η∆t+ ρ

k2

)
λ+ η = 0 (3.81)

Fig.3.2 shows the real part of λ as a function of c. Notice that, regardless of value of c,

there is always a root λ with reλ > −0.01. The values at c = 0 and c = 1 agree with

the earlier analysis of the 2nd and 3rd order scheme respectively. Notice that the system

bifercates near c = 0. This offers another clue on why the 2nd order scheme blows up

during the simulation.
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In conclusion, the most stable scheme we found involves interpolating the term∇2v to

step n+1−ε. Under a dynamic shear, the leading term of the truncation error is εηa∆t∇2vt.

This term is first order, and is biggest when vshear is not constant over time. The optimal

value ε depends on the value ηa, and must be chosen with stability in mind. We have shown

that blindly minimizing the truncation error can get us into an unstable system at the time

step we choose.

Stability and stiffness

Note that the convergence issue we encountered originates from the fact that ηa �

η. Thus, it makes sense to try setting ηa to be lower. This would also help reduce the

truncation error, which is proportional to ηa. However, when we lowered ηa, we found that

the simulations quickly became unstable. The following lemma gives an explanation.

Lemma 3.2.3. Stability requires that ηa > 1
2ηmax.

Proof. We perform a stability analysis of the momentum equation (3.3). Consider a region

where the viscosity is constant, thus the viscous force can be simplified to η∇2v. Perturb

the stoke solution by a small velocity field δu. We can choose δu to be divergence-free,

thus the pressure force remains the same.

We start by analyzing the purely first order scheme. For the timescale we are interested

in, the intertia term is much smaller than the viscous term, 1
∆t � ηa. Thus the leading

terms of the perturbation to the momentum equation become,

−ηa∇2δun+1 ≈ (η − ηa)∇2δun (3.82)

On each iteration, the perturbation is magnified by η−ηa
−ηa = 1 − η

ηa
. For stability inside the

EPS network, where η = ηmax, we need
∣∣∣1− ηmax

ηa

∣∣∣ < 1. That is, ηa > 1
2ηmax. This is

confirmed in our numerical simulation.
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Next we analyze the n+ 1− ε interpolation scheme. With the ansatz δun = cnδu0, the

leading terms becomes,

−ηa∇2δun+1 ≈ (η − ηa)∇2δun+1−ε (3.83)

cn+1∇2δu0 ≈ (1− ηmax
ηa

)
(
cn + (1− ε)(cn − cn−1)

)
∇2δu0 (3.84)

c2 ≈ (1− ηmax
ηa

)(2c− 1− εc+ ε) (3.85)

c2 − (1− ηmax
ηa

)(2− ε)c+ (1− ηmax
ηa

)(1− ε) ≈ 0 (3.86)

We want |c| < 1. For small ε, this requirement translates to ηa > 5
9ηmax. This improves the

constraint on ηa slightly (about 1
9ηmax.)

Stability of the system is also determined by the magnitude of explicit terms compar-

ing to the magnitude of implicit terms. The largest terms in the momentum equation are

pressure, elastic force, viscous force. The pressure term only reacts to other forces through

the divergence in u. In the first order Gauge-Uzawa scheme, the pressure-related term does

not cause any instability. On the other hand, both the elastic force and viscous force are

large, and handled explicitly. They are the main contributors to the equation’s stiffness.

Because of the big difference in viscosity inside our system, the viscous force term

∇ · (2ηD) requires special care. In the solution, both η and 2D are of order 1. Inside

the biofilm, η ∼ ηmax ∼ 105 and 2D ∼ 10−5. Thus ∇ · (2ηD) seems to be of benign

magnitudes. However, the discrete version of this operator can have a problem on the

biofilm-solution interface.

For example, say our interface width is m ≈ 5 grids. On the edge of the EPS-solution

interface, there are two adjacent cells where one has the volume fraction φn ≈ 0 and the

other has φn ≈ 1
m
φmax. The viscosities in these cells are η ≈ ηsol and η ≈ 1

m
ηmax respec-

tively. Eq.(3.92) gives their approximate shear rate at γ̇ ≈ 1 and γ̇ ∼ m
ηmax

respectively.

During the discretization process, we occasionally have to average the values of two ad-

jacent cells to get a value at half-cell locations. For the two aforementioned cells, their
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average rate-of-strain tensor has the magnitude of order 1
2 . Thus the viscous stress force

∇ · (2ηDn) ∼ 1
m∆xηmax can be of order 106.

Since this force is handled explicitly, we have a very stiff equation. Fortunately, the mo-

mentum equation has the implicit term ηa∇2un+1 that we introduced during the Helmholtz-

ification process. If ηa is big enough, this term will dominate, and allow the momentum

equation to accept a relatively large force without blowing up. In the purely-viscous model,

we have,

ηa = ηpsφ
n
max + ηs(1− φnmax). (3.87)

The elastic force is also large and explicit, thus adding to the stiffness of the momentum

equation. In order to keep the equation stable, we increase ηa further,

ηa = aηnφ
n
max + ηpsφ

n
max + ηs(1− φnmax). (3.88)

One way to alleviate the equation’s stiffness is to handle the viscous stress implicitly.

This can be done by augmenting an iterative scheme to our solver. Let un+1, 0 = vn+1−ε,

then for i = 0, 1, 2, . . . , we solve for un+1,i+1 in,

ρ

(
3un+1,i+1 − 4vn + vn−1

2∆t

)
+ ρvn+1 · ∇un+1,i + ηpres (∇sn)− ηa∇2un+1,i+1

= Fn+1
CH + Fn+1

elastic +∇ · (ηDn+1,i)− ηa∇2un+1,i. (3.89)

Once un+1,i+1 converges, say, to un+1, we have

ρ

(
3un+1 − 4vn + vn−1

2∆t

)
+ ρvn+1 · ∇un+1 + ηpres (∇sn)

= Fn+1
CH + Fn+1

elastic +∇ · (ηDn+1). (3.90)

Hence the viscous force is taken cared of implicitly.

In our experience, this implicit scheme seems to work fine in purely viscous simula-

tions. It needs several iterations when vshear changes value, and needs only one iteration

otherwise. The drawback is that we no longer have the ηa∇2vn+1 term that helps absorb
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the equation’s stiffness. Such term is very useful for the viscoelastic simulation, where

Fn+1
elastic can be very big. Thus, we opt not to use this implicit scheme in the viscoelastic

model.

Boundary condition and ghost cell values

One pitfall in implementing the Gauge-Uzawa scheme is to assume that the flow field

vn has a Dirichlet boundary condition. It doesn’t! Only un satisfies the a zero dirichlet

boundary at the wall y = 0. The projection step yields vn = un + 1
ρn
∇ψn. Recall that

ψ has the zero Neumann boundary condition. Thus vny=0 = 1
ρn
∇ψn, which is zero in y

direction, but nonzero in x and z directions. It is a mistake to compute the ghost cell value

of v using the assumption vy=0 = 0. The correct value is vny=0 = 1
ρn
∇ψny=0.

Such mistake can easily go unnoticed since ∇ψny=0 is usually small. However, our nu-

merical scheme for the momentum equation has the added term ηa∇2v. Chapter 3.2 shows

that this term makes any error in ∇2v dissipates slowly, especially so in the first order

scheme. This allows small errors to accumulate across thousands of steps into something

noticeably, as shown in fig.3.3.

Such mistake can also be rendered harmless if one solves the momentum equation fully

explicitly. In that case, the error due to this mistake would dissipate in only one timestep.

Prior works on this biofilm model [76] [75] use viscous model on a regular grid, which

doesn’t need the ghost cell value for v, thus most likely did not run into this issue.

1-D analytical solution

One can readily find the analytical solution to the 1-D purely-viscous flow in a 2-D

domain. Though simple, the result that we obtain gives us some intuition about the flow in

the system. In this setting, all quantities are constant over x direction but vary in y. That is,

φ(t, x, y) = φ(t, y). The flow is vx(t, x, y) = vx(t, y) and vy(x, y) = 0. Thus, v ·∇v = 0.

Without Cahn Hilliard dynamics, the dynamic equilibrium (i.e. the stoke solution) has all
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Figure 3.3: The correct boundary condition for the Gauge-Uzawa scheme is uy=1 = 0. The
incorrect assumtion that vy=1 = 0 can introduce a boundary error of order 10−7 on each
time step. Using the first order scheme (3.50), such error accumulates over 105 steps into
the noticeable spurious flow of magnitude 3× 10−3.

Figure 3.4: Shear profile for 1-D flow in a 2-D domain.

terms in the momentum equation (3.3) equal zero. The velocity profile is determined by

∇ · (2ηD) = 0,

∇ ·

η(y)

 0 γ̇(y)

γ̇(y) 0


 =

0

0

 , (3.91)

where γ̇ = ∂
∂y
vx(y) is the shear rate. This yields η(y)γ̇(y) = const.

Nontrivial EPS profile has a more complicated flow. However, up to an order of mag-
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nitude, it is still true that

γ̇ ∝ 1/η. (3.92)

This can be used to partially check the correctness of the numerical simulation.

3.3 ELASTIC STRESS EQUATION

The elastic stress in our model originates from the EPS, which exists only in the

biomass. Thus τn = φnτ̃n, where τ̃n is the elastic stress per biomass volume fraction.

In the region with no biomass, τ̃n is a ghost quantity which we compute but do not use.

Analytically, it does not matter whether we choose to keep track of either the quantity

τn or τ̃n. Numerically, however, it is better to keep track of τn. The reason is, when the

system is being sheared, the magnitude of τ̃n is very high in regions where φn is very low,

and vice versa. Thus there is a big loss in numerical accuracy of the product φnτ̃n when φn

and τ̃n are advected separately.

Due to advection and the Cahn-Hilliard dynamics, the value of φn outside the biofilm is

usually not exactly zero. As will be discussed in Sec.3.4, it is common to see a faint level

of biomass φn ≈ 10−5 in the solution region. Under shear, the EPS in these faint biomass

experiences a big strain rate. The damping term in the Giesekus model keeps the strain in

such regions from getting too large.

As remarked in Sec.2.3, the Giesekus constitutive equation for τn has a singularity at

φn = 0. We circumvent this by introducing a numerical parameter εφ in Sec.2.3, which

generates a small amount of arbitrariness to our model. One alternative is to use the Phan-

Thien-Tanner model, which is similar to Giesekus model (2.10), but the damping term

τn · τn is replaced by tr(τn)τn. Instead of (2.22), we have,

∂τn
∂t

+ vn · ∇τn −Wn · τn + τn ·Wn − a(Dn · τn + τn ·Dn)

+ α

φnηn
tr(τn)τn + τn

Λ1
= g̃nτn + 2φnηn

Λ1
D. (3.93)
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The advantage of the tr(τn)τn form is that we can easily handle the singularity at φn. After

the substitution τp = τn +BiφnI with Bi = ηn
aΛ1

, instead of Eq. (2.30), we have

∂τp
∂t

+ vn · (∇τp)−Wn · τp + τp ·Wn − a(Dn · τp + τp ·Dn)

+
(

α

φnηn
tr(τp −BiφnI) + 1

Λ1

)
(τp −BiφnI) = g̃nτp. (3.94)

This can be solved by the same numerical scheme we presented in Sec.3.1, but with no

explicit damping term, and with the effective relaxation time Λ̃1(~x, t) defined as the half

the harmonic mean of Λ1 and φnηn
α tr(τp−BiφnI) . The benefit of this method is that, when φn is

small, the damping term now shows up as a decaying factor, which is easy to handle and

can be computed faithfully. Contrast this to the damping term in the Giesekus model which

requires a numerical approximation in order to avoid the singularity at φn = 0. One draw

back is that there is a study [22] that shows the Phan-Thien-Tanner model to be less stable

than the Giesekus model.

In our numerical simulations, the Phan-Thien-Tanner model yields more or less the

same results as the Giesekus model. The two models differ only in the damping term. The

key contribution of this term to the biofilm model is to damp the stress outside the EPS

to zero. It has only a small affect on the stress inside the main biomass, whose strain is

relatively small. Thus, both models yield a similar elastic stress inside the biomass. In this

work, we decide to focus on the Giesekus model.

3.4 BIOMASS VOLUME FRACTION EQUATION

In this section, we discuss some basic properties of the biomass volume fraction equa-

tion (φn), and issues we encounter while implementing it. Recall the mixing free energy

density,

f = Γ1

2 |∇φn|
2 + Γ2

[
φn
N

ln(φn) + (1− φn) ln(1− φn) + χφn(1− φn)
]

(3.95)

=: Γ1

2 |∇φn|
2 + Γ2f̃(φn). (3.96)
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The Γ1 term maintains finite interface width to some extent. The Γ2 term encourages the

biomass to mix with the solution when f̃ is concave up, and to nucleate when f̃ is concave

down. Thus we are interested in the second derivative of f̃ ,

f̃(φn) = φn
N

ln(φn) + (1− φn) ln(1− φn) + χφn(1− φn), (3.97)

f̃ ′(φn) = 1
N

+ lnφn
N
− ln(1− φn)− 1 + χ(1− 2φn), (3.98)

f̃ ′′(φn) = 1
Nφn

+ 1
1− φn

− 2χ. (3.99)

We then find the inflection points,

0 = f̃ ′′(φn) = 1
Nφn

+ 1
1− φn

− 2χ (3.100)

0 = 1− φn
N

+ φn − 2χφn(1− φn) (3.101)

0 = 2χφ2
n −

(
2χ− 1 + 1

N

)
φn + 1

N
(3.102)

0 = φ2
n −

(
1− 1

2χ(1− 1
N

)
)
φn + 1

N2χ (3.103)

φn = 1
2

1− 1
2χ(1− 1

N
)±

√√√√(1− 1
2χ(1− 1

N
)
)2

− 4
N2χ

 (3.104)

Fig.3.5 plots the derivatives of the bulk free energy for N = 1000, χ = 0.55. It

shows that the biomass nucleates when φn ∈ (0.0113, 0.0805), and mixes with the solution

otherwise. Fig.3.6 plots the inflection points φ1, φ2 of f̃ as a function of the parameters N

and χ. The biomass nucleates when φn ∈ (φ1, φ2).

As the biomass migrates, the two quantities of interest are the excessive network veloc-

ity −λ∇ δf
δφn

and the corresponding flux −λφn∇ δf
δφn

, where,

∇ δf

δφn
= −Γ1∇(∇2φn) + Γ2∇

( 1
N

ln(φn + ε)− ln(1− φn)− 2χφn
)

(3.105)

= −Γ1∇(∇2φn) + Γ2

(
1
N

1
φn + ε

+ 1
1− φn

− 2χ
)
∇φn. (3.106)

φn∇
δf

δφn
= φn∇

(
−Γ1∇2φn + Γ2

( 1
N

ln(φn + ε)− ln(1− φn)− 2χφn
))

(3.107)

= −Γ1φn∇(∇2φn) + Γ2

(
φn

N(φn + ε) + φn
1− φn

− 2φnχ
)
∇φn. (3.108)
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Figure 3.5: The bulk free energy f̃ and its second derivative, plotted with N = 1000,
χ = 0.55. The biomass nucleates when φn ∈ (0.0113, 0.0805).

The ε is required in (3.105), (3.106), (3.107) to regularize the singularity at φn = 0. It is

not required in (3.108). The choice of ε impacts the network flux only in regions where

the biomass is faint, φn � 1
N

. The biomass flux inside the main biofilm lobe is virtually

independent of ε.

On the staggered grid, evaluating the form (3.108) involves computing the average of

two adjacent cells (φn)i+ 1
2
, while (3.107) does not need this. On the other hand, (3.108) has

the advantage of being readily linearizable, so it can be used in the BiCG-stab solver. The

numerical results presented here use the form (3.108), which yields the biomass volume

fraction equation (3.6).

By definition, φn should be nonnegative. Analytically, starting with a nonnegative ini-

tial φn(x, 0), our model maintains the nonnegativity of φn(x, t) over the whole domain at

all time. For numerical computation under a finite grid size and finite time step, there are

two main causes of φn becoming slightly negative.

One cause is the advection of the biomass. Even when we start with φn = 0 outside the

biofilm, any spatially second order finite difference advection schemes will yield φn that is

slightly negative near the interface ( [64] p. 73). Since the bulk free energy term requires
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(a) In the region bounded by the two surfaces, the bulk free energy f̃ is concave down, thus the
biomass nucleates.

(b) First inflection point of f̃(φn) (c) Second inflection point of f̃(φn)

Figure 3.6: Inflection points φ1, φ2 of the bulk free energy f̃(φn). The biomass nucleates
when φn ∈ (φ1, φ2).
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that φn is nonnegative, we enforce this by clipping its values in our implementation: φn :=

max(0, φn). However, the clipping introduces a truncation error which effectively increases

the total biomass volume slightly. Under a straightforward finite-difference discretization,

clipping increases the total biomass volume
∫

Ω φ(x, t)dx during a shearing simulation by

0.1 - 1%. We mitigate this issue by advecting φn with WENO as outlined in Sec.3.1. This

reduces the truncation error due to clipping to a negligible level.

Another cause of φn being negative is the mixing due to the Cahn-Hilliard dynam-

ics. The numerical computation of this process can yield negative φn near the interface.

Through numerical investigations, we found that reducing the time step size does not miti-

gate the error due to clipping, but refining the spatial grid size solves the problem.

In summary, we use the biomass flux of the form (3.108), which yields the biomass vol-

ume fraction equation (3.6). The clipping of φn results in a slight increase of the biomass,

but the problem subsides as the grid size gets finer, and φn is advected by the WENO

scheme.

3.5 GPU IMPLEMENTATION

The numerical scheme is implemented to run on a graphics processing unit (GPU), of-

fering almost a hundred time speed up over a single-thread CPU-only program. Numerical

computations are carried out on a GPU, while input/output and bookkeeping are done on

the CPU. The GPU code is written in CUDA C, which is a general purpose GPU program-

ming language based on standard C created by the GPU maker Nvidia. The CPU code that

performs input/output and parameters handling is written in C++.

Nvidia provides several guides and manuals about GPU programming. Good starting

points are [43] [44], which introduce many terms and concepts that we will use in this

section. A thread is a basic software unit that carries out a series of instructions. These

instructions are physically executed on a CPU core or a GPU thread processor (also called

a GPU core). Each thread resides in one core. On the other hand, each core might work on
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several threads concurrently. A multithreaded software uses several threads to complete

its computation. Both CPUs and GPUs run on a clock that ticks on the order of 109 cycles

per second.

A GPU gains its computational efficiency/speed through massive parallelism. A typical

GPU contains 200 - 512 thread processors. In contrast, a typical computational server

contains 4 - 8 CPUs, each of which contains 4 - 8 cores. Thus each server typically contains

16 - 64 CPU cores. A simulation can be computed across multiple servers, but network

communication often becomes the bottle neck for the computation.

A GPU also gains its speed through its high memory bandwidth, which is typically

100 GB/sec. Multi-threaded CPU codes keep their data in the CPU main memory, which

typically has the bandwidth of 10 GB/sec. If the calculation is spanned across multiple

servers, the bottle neck is posed by the network speed, which has a typical bandwidth of

0.1 - 1 GB/sec. For straightforward calculations like the finite difference method, memory

bandwidth can easily become the bottleneck for the computation. Thus, it is important to

keep most data inside the GPU, and minimize the read/write to the CPU main memory.

In both the CPU and GPU, when several computational threads share the same com-

putational core, the core has to divide its time among the threads. This is done through

the process called context switch, in which the core saves all computational resources be-

longing to one thread, and then switches to working on another thread. Context switch

usually occurs hundreds of times each second. One fundamental difference between CPU

and GPU computing is that CPU threads are “heavy” while GPU threads are “light”. A

CPU context switch takes thousands of computational cycles, while a GPU context switch

incurs almost no computational cost. Therefore, CPU-based multithreaded numerical com-

putations normally create only one thread per CPU core. On the other hand, to fully utilize

GPU computational resource, the user is required to create several threads per core.

Additionally, CPU threads take thousands of cycles to create, while GPU threads are

created at almost no computational cost. Once created, each CPU thread is used for a long
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time, often for the entire simulation duration. In contrast, GPU threads are ephemeral.

They are continually spawned and terminated. Each lives for only a fraction of a second.

Hardware-wise, GPU cores are grouped into streaming multiprocessors (SM).

Software-wise, GPU threads are grouped into blocks. Threads that belong to the same

block are computed on cores that reside in the same SM. As a consequence, threads in the

same block are executed in a lockstep fashion, i.e. they execute the same instruction at the

same time, and can communicate very fast within the block. Due to speed and resource

constraints, a block should contain 32 - 1024 threads. The optimal number of threads per

block depends on the exact hardware, the memory access pattern, computational intensity,

and the amount of register memory that each thread uses. GPUs use thread parallelism to

hide the memory latency, i.e. the duration that a thread processor needs to wait for the

data to arrive from the memory. Therefore, in order to utilize the full computational speed,

each core should be working on several threads concurrently. This is achieved both by hav-

ing many threads in each block, and by running several blocks concurrently on each SM.

Because of this, a high-end GPU needs at least tens of thousands of threads in order to run

at the full speed.

Take for example a computation of a 200 × 200 × 200 data points by using 448 CPU

cores or 448 GPU cores. On CPUs, this computation could be done on 14 servers, each

with 32 CPU cores. One would create one computational thread per CPU core, totaling 448

threads. Each thread would be responsible for roughly 18, 000 data points. Each thread

would live for the entire length of simulation, passing data to and from other threads as

needed. Threads on the same server communicate via the CPU main memory at 10 GB/sec

bandwidth and 1/10 µs latency. Threads on different servers communicate at 1 GB/sec

bandwidth and 10 µs latency.

On GPUs, this computation can be done on a single GPU card. The card consists of

14 SM, each containing 32 cores, for the total of 448 cores. One might create 8, 000, 000

threads, grouped into 62, 500 blocks, each of size 128. Each thread is responsible for only
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one data point. The blocks are queued to be processed by the SMs. Each SM processes

several blocks concurrently. As an SM finishes computing one block, all threads in that

block terminate. The SM starts working on another block from the queue. This repeats

until all blocks have been processed. Threads are short-lived. They all run the same code

called kernel. A program would consist of dozens of kernels, each created to accomplish a

short specific goal. One launches a kernel with 8, 000, 000 threads to compute a Laplacian.

They would finish this job in a fraction of a second, then terminate. Then another kernel

of 8, 000, 000 threads are launched to take a finite difference. This too would finishes in a

blink. Then another kernel with 8, 000, 000 threads is launched to perform the next specific

task, and so on. Threads in the same block can communicate via the SM’s shared memory

at virtually no bandwidth limit, i.e. as fast as they can compute results, and at the latency

of about 10-20 clock cycles (1/50 - 1/25 µs). Threads in different blocks can communicate

via the GPU’s global memory at the bandwidth of 100 GB/sec and latency of 500 cycles (1

µs).

Data layout is also an important issue. The memory is divided into consecutive blocks

called cache lines. Each cache line is 128 bytes on the GPUs we currently use. Under

certain conditions, fetching the whole 128-byte of data from the same cache line can take

the same amount of time as fetching just one byte. This is called a coalesced memory

access. The condition in which this happens is listed in the GPU programming manual,

and varies from GPU to GPU. In general, we want threads in the same block to access data

from the same few cache lines.

Managing data dependency is an important aspect of parallel programming. In GPUs,

threads in the same block are executed in lockstep. However, threads in different blocks are

executed in non specified order. They might executed concurrently or at a different time.

Thus, there is no communication between blocks. If one block needs a data computed by

another block, we must wait for the kernel to terminate, then launch new kernel.

The biofilm code consists of about 30 kernels that take turn running on a single GPU.
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All variables are kept in the GPU. They are transferred to the CPU memory only when we

want to save the data into a file. A kernel can be as short as two lines, such as the one used

for adding two arrays together. On the other hand, the kernel for computing terms in the

momentum equation is about 150 lines.

The boundary conditions are handled by the method of ghost cells. There are several

kernels whose sole job is to set the ghost cells to the appropriate values based on the im-

posed boundary conditions. This allows other kernels to treat boundary nodes and internal

nodes in the same way, thus simplifying the code structure.

Starting from the domain of size Nx ×Ny ×Nz, we pad each size by one data point to

hold the ghost cell values. This (Nx + 2) × (Ny + 2) × (Nz + 2) data is further padded

into (Nx + 2) × (Ny + 2) × (Npadded
z ) in order to align with the cache line. This allows a

chunk of data to be fetched in a coalesced manner mentioned earlier. The value Npadded
z =

16 × d(Nz + 2)/16e seems to work fine for the two types of GPUs we often use (Tesla

C1060 and C2070).

The grid size, along with other grid-related parameters, are stored in the class

GridParamsBase. Since Tesla GPUs can perform multiplication quicker than division, we

also store the value idx = 1/∆x. Any division by ∆x can then be replaced by a multipli-

cation by idx. Oft-used quantities such as 1/(∆x)2 are also stored so that they don’t need

to be computed repeatedly. Similarly, values of nondimensionalized parameters are stored

in their own class. These parameters are kept in the GPU’s constant memory, denoted by

the keyword __constant__. The constant memory is a small but very fast part of the GPU

memory. It can be set only by the CPU, not by the GPU. It can hold only 64 KB, and only

8 KB is cached by each SM at any time.

1 c l a s s GridParamsBase {
2 p u b l i c :
3 i n t Nx , Ny , Nz ;
4 i n t Nx1 , Ny1 , Nz1 ;
5 i n t Nxp , Nyp , Nzp ;
6 bool i s _ 3 d ;
7
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8 myreal Lx , Ly , Lz ;
9 myreal dx , dy , dz ;

10 myreal i d x , i d y , i d z ; / / 1 / dx
11 myreal idx2 , idy2 , i d z 2 ; / / 1 / dx / dx
12
13 i n t dbx , dby , dbz ; / / d imBlock . . . i n C o r d e r i n g
14 i n t BLOCK_SIZE_3D ;
15
16 i n t Nxpp , Nypp , Nzpp ;
17 i n t sx , sy , s z ; / / s t r i d e , s z == 1
18 s i z e _ t Ndata ;
19 s i z e _ t NxpNypNzp ;
20 i n t dimGrid_y ;
21 . . .
22 }
23
24 _ _ c o n s t a n t _ _ Gr idParamsBase GP ;

The computation domain (Nx + 2) × (Ny + 2) × (Npadded
z ) is split into blocks of size

dimBlock = (dbx, dby, dbz). There are several considerations for choosing the block size. For

the optimal usage of SM resources, we want dbx∗dby∗dbz to be roughly 64 - 256. Cache

works in blocks of 128 bytes, which amounts to sixteen floating point doubles, each taking

up 8 bytes. Therefore, to maximize coalesced memory access, we want dbz to be a factor of

16. Some optimization can be done if the ghost points and the points that use them belong

to the same block. Thus we want dbx and dby to be of size two or more. For our biofilm

code, we set dimBlock = (2,2,16) .

Once we fix the block size, we can calculate the number of blocks needed to

cover the entire computation domain. This is called the grid dimension, dimGrid =

(
⌈
Nx+2
dbx

⌉
,
⌈
Ny+2
dby

⌉
,
⌈
Nz+2
dbz

⌉
). Each computation kernel is then given launch parameters

through a special CUDA syntax

1 kerne l_name <<<dimGrid , dimBlock >>> ( arg1 , arg2 , arg3 , . . . ) ;

This command launches roughly (Nx + 2) × (Ny + 2) × (Npadded
z ) threads, each run-

ning the same kernel code. Each thread is automatically given the variables blockIdx and

threadIdx , which together can be used to figure out which data point the thread is responsible

for.
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1 i n t i = b l o c k I d x . z ∗ blockDim . z + t h r e a d I d x . z ;
2 i n t j = b l o c k I d x . y ∗ blockDim . y + t h r e a d I d x . y ;
3 i n t k = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;

The indices i , j , k and x, y, z above are paired up in the opposite way of what one

would normally expect. This is because the CUDA kernel launch assumes that threads

access data in the way that x is the fastest varying coordinate, as is customary in Fortran

language. However, the biofilm code and the HDF5 library, which we use for saving files,

store data in the way that z is the fastest varying coordinate, as is customary in C/C++

languages. Thus the coordinates must be reversed at some point in the program.

Unfortunately, GPU devices of capability 1.3, which include Tesla C1060, can handle

only two dimensions in dimGrid. We get around this by folding the x and y dimensions

of dimGrid together, dimGrid = (
⌈
Nx+2
dbx

⌉
×
⌈
Ny+2
dby

⌉
,
⌈
Nz+2
dbz

⌉
). The kernel then needs to

unfold this.

1 i n t b l o c k I d x _ z = b l o c k I d x . y / GP . dimGrid_y ;
2 i n t b l o c k I d x _ y = b l o c k I d x . y % GP . dimGrid_y ;
3 i n t i = b l o c k I d x _ z ∗ blockDim . z + t h r e a d I d x . z ;
4 i n t j = b l o c k I d x _ y ∗ blockDim . y + t h r e a d I d x . y ;
5 i n t k = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
6 i n t i d x = i ∗GP . sx + j ∗GP . sy + k ;
7 i f ( i >=GP . Nxp | | j >=GP . Nyp | | k>=GP . Nzp ) re turn ;

The snippet above also includes the calculation of the index idx, which the thread uses

to fetch and store data. It is possible that the padded data size is not a multiple of the

block size. For example, we might have Nz + 2 < dimGrid.z ∗ dimBlock.z. In this case,

there will be some threads that are launched to take care of the grid locations outside the

computational domain, such as k = Nz + 3, Nz + 4, · · · . We do not need these threads,

thus we stop them as shown in the last line of the above snippet.

An example of a complete kernel is given in the next snippet. This kernel is a part of

the Helmholtz solver described in Appendix A. This kernel’s sole duty is to divide the

eigenvalues from the eigenmodes.

1 _ _ g l o b a l _ _
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2 void d i v i d e _ e i g e n v a l ( c u f f t C o m p l e x ∗ da ta , myreal coef , myreal lamb ,
3 myreal s c a l e , i n t dsx , i n t dsy ) {
4 l e t _ i j k ( i , j , k ) ; / / Compute t h e v a l u e o f i , j , k , i d x as done above .
5 i f ( ! ( i <GP . Nx && j <=GP . Ny && k<GP . Nz / 2 + 1 ) ) re turn ;
6
7 i f ( i ==0 && j ==0 && k ==0) {
8 i f ( abs ( lamb ) <1 e−30) {
9 d a t a [ 0 ] . x = 0 . ; d a t a [ 0 ] . y = 0 . ; re turn ;

10 }
11 }
12 myreal e i g e n = s c a l e ∗ ( lamb
13 − c o e f ∗ (+ 4 . ∗ pow2 ( s i n ( PI ∗ i / GP . Nx ) ) ∗ GP . idx2
14 + 4 . ∗ pow2 ( s i n ( PI ∗ j / ( 2 ∗GP . Ny ) ) ) ∗ GP . idy2
15 + 4 . ∗ pow2 ( s i n ( PI ∗k / GP . Nz ) ) ∗ GP . i d z 2 ) ) ;
16 d a t a [ i ∗ dsx + j ∗ dsy + k ] . x /= e i g e n ;
17 d a t a [ i ∗ dsx + j ∗ dsy + k ] . y /= e i g e n ;
18
19 i f (1 <= j && j <GP . Ny ) {
20 d a t a [ i ∗ dsx + (2∗GP . Ny−j )∗ dsy + k ] . x /= e i g e n ;
21 d a t a [ i ∗ dsx + (2∗GP . Ny−j )∗ dsy + k ] . y /= e i g e n ;
22 }
23 }

This Helmholtz solver is implemented on top of the CUFFT package. It could have

been implemented more efficiently through discrete cosine transform (DST). However, no

DST package is available on CUDA at the time of writing. Since CUFFT is highly opti-

mized by Nvidia, our own in-house implementation of DST will likely be much slower.

We thus stay with CUFFT.

Instead of discretizing each equation out by hand, each equation is coded as a compo-

sition of basic operators, such as gradient, laplacian, and divergence. This makes it easier

to catch bugs. Any programming error in these basic operators would show up in multiple

equations, hence more likely to catch attention and get fixed. As an example, the following

snippet shows code from three separate kernels. Together, they handle the EPS volume

fraction equation (3.6), formulated as Ax = b and solved using the BiCG-stab method.

The first part computes the right hand side quantity b. The next two parts together compute

Ax based on the input x.

1 RHS = ST . i d t _ 2 ∗ ( 4 . ∗ ST . p h i [ i d x ] − ST . p h i _ o l d [ i d x ] )
2 − a d v e c t ( ST . ve lo , ST . phi , idx , i , j , k ) ;
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3
4 / / Second d e r i v a t i v e o f b u l k mi x i ng f r e e e ne r gy
5 _ _ d e v i c e _ _ myreal f2 ( c o n s t myreal phi , c o n s t myreal eps ) {
6 re turn NP . NP_inv / ( p h i + eps ) + 1 . / (1 − p h i ) − 2 .∗NP . Kai_CH ;
7 }
8 myreal pb = ST . p h i _ b a r [ i d x ] ;
9 temp1 [ i d x ] = lam1 ∗ l a p l a c i a n ( x , i d x ) ;

10 temp2 [ i d x ] = lam2 ∗ pb ∗ f2 ( pb , eps ) ;
11
12 Ax = ST . i d t 3 _ 2 ∗ x [ i d x ]
13 + d i v _ s c a l a r _ g r a d ( ST . p h i _ b a r , temp1 , i d x )
14 − d i v _ s c a l a r _ g r a d ( temp2 , x , i d x )
15 − x [ i d x ] ∗ g _ n _ t i l d e ( ST . p h i _ b a r [ i d x ] , ST . c c _ b a r [ i d x ] ) ;

As an example, we show the implementation of a basic operator that was used in the

earlier snippet,

1 i n l i n e _ _ d e v i c e _ _
2 myreal d i v _ s c a l a r _ g r a d ( c o n s t myreal ∗a , c o n s t myreal ∗b ) {
3 / / r e t u r n d i v ( a grad b ) , where a and b are bo th c e l l c e n t e r e d .
4 re turn 0 . 5 ∗ (
5 + GP . idx2 ∗ ( + ( a [ GP . sx ] + a [ 0 ] ) ∗ ( b [GP . sx ] − b [ 0 ] )
6 −(a[−GP . sx ] + a [ 0 ] ) ∗ ( b [ 0 ] − b[−GP . sx ] ) )
7 + GP . idy2 ∗ ( + ( a [ GP . sy ] + a [ 0 ] ) ∗ ( b [GP . sy ] − b [ 0 ] )
8 −(a[−GP . sy ] + a [ 0 ] ) ∗ ( b [ 0 ] − b[−GP . sy ] ) )
9 + GP . i d z 2 ∗ ( + ( a [ GP . sz ] + a [ 0 ] ) ∗ ( b [GP . sz ] − b [ 0 ] )

10 −(a[−GP . sz ] + a [ 0 ] ) ∗ ( b [ 0 ] − b[−GP . sz ] ) )
11 ) ;
12 }
13
14 i n l i n e _ _ d e v i c e _ _
15 myreal d i v _ s c a l a r _ g r a d ( c o n s t myreal ∗a , c o n s t myreal ∗b , i n t i d x ) {
16 re turn d i v _ s c a l a r _ g r a d ( a+ idx , b+ i d x ) ;
17 }

In addition to the EPS volume fraction, the nutrient equation is also solved by BiCG-

stab. We use the implementation provided by the CUSP library [19]. This library provides

several ways to represent a sparse matrix. If one discretizes these equations into the form

Ax = b for a domain of size N3, the matrix A will have 7N3 to 25N3 non-zero elements.

Each element requires 4 bytes for the index and 8 bytes for the double floating point value.

As an example, for a 2563 grid, a sparse array A with 25N3 non-zero elements requires

12× 25× 2563 bytes, which is just over 5 GB of memory. This is too big, considering that
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our largest GPU has just under 6 GB of memory, and we still need some memory space for

other variables. Instead of writing the coefficients of A out explicitly, we write a function

that carries out the operation of multiplying by A. This requires no additional memory

space, aside from those already used to hold φn,v, c, τ and other variables that form the

coefficients of the equation. As an added advantage, this type of implementation tends to

naturally access memory in a coalesced manner.

Instead of allocating and freeing the GPU memory manually, which can be error prone,

we use Thrust library. Memory used by temporary variables are automatically freed at the

end of its naming scope. Thrust library also allows us to quickly write a GPU kernel that

fits the map-reduce paradigm [12] such as max, sum, norm, and clipping. The parallel

communications that are needed to efficiently accomplish such action are automatically

handled by the library.

Data are written out in HDF5 file format, which can be loaded into Python or Matlab for

further analysis. The file can also be read by VisIt [36] or Paraview [31] for visualization.

3.6 MESH REFINEMENT

To check for the code’s correctness and accuracy, we perform mesh refinement tests

under two very different characteristic timescales: growing a biofilm with t0 = 1000 sec,

and shearing a biofilm with t0 = 1 sec. The code is tested in both 2-D and 3-D geometries.

The truncation errors are proportional to the smoothness of functions in the system.

If their derivatives are very large, a mesh refinement might not show a clear convergence

order at the grid sizes that one runs the simulations. In order to avoid this problem, while

conducting mesh refinement, we set up our initial biofilm profile to be smoother than what

we normally use by increasing the biofilm-solution interface width. These initial profiles

are shown in Fig.3.7, 3.9. We also reduce the viscosity ratio ηn+ηps
ηs

from 104 to 103. Since

the volume fraction φn and nutrient concentration c are solved by an iterative method, it is

also crucial to set the convergence criteria to be small enough so that the residual error will
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not contaminate the refinement tests. Here we set the BiCG-stab relative tolerance for φn

and c to be 10−12.

The limited amount of GPU memory places an upper limit on the grid size that we

can use. In 3-D geometries, we can simulate on a grid size up to 2403 for the viscoelastic

model or 2563 for the viscous model. In 2-D geometries, we can simulate on a grid size

up to just over 10242 for both models. We perform mesh refinements in both 2-D and

3-D geometries. Apparently, the 2-D mesh refinements allows us to refine the geometry

spatially into a finer grid size than that is possible in 3-D. On the other hand, 3-D mesh

refinements test the code base more thoroughly.

For 2-D spatial refinement, we fix ∆t = 10−4 for growing a biofilm and ∆t = 10−5 for

shearing a biofilm, then run the simulations on n2 grids where n = 32, 64, . . . , 1024. The

dimensionless domain size is 1 × 1. Thus ∆x = ∆y = 1/n. We use the finest grid as the

reference solution. Appendix B discusses the details of the convergence rate calculation.

The convergence order reported here is calculated from (B.8). We grow a bump of biofilm

until t = 2. The initial and final biofilm profiles are shown in Fig.3.7 for 2-D and 3.8 for

3-D. Table 3.2 depicts the spatial refinement for all the governing equations. A clear 2nd

order convergence rate is established for physical variables φn, c, τp,v in both the L2 and

L∞ norm. Note that the numerical scheme for the advection of τp is spatially first order.

However, the velocity field is so weak that this first order truncation error does not show

up in the refinement result even at the finest grid size ∆x = 1
1024 . For the refinement test in

time, we fix a spatial grid size ∆x = 1
1024 and then vary ∆t. Table 3.3 clearly demonstrates

the first order convergence.

For 3-D spatial refinements, the finest grid that we can simulate is roughly 2403. One

possible setup is to run the simulations over the grid sizes n3 for n = 30, 60, 120, 240. The

problem with this scheme is that most of the grids are very coarse, thus the convergence re-

sults can be contaminated by the higher order terms in the errors. To alleviate this problem,

we run simulation on n3 grids where n = 48, 96, 144, 192, 240. This let us run more simu-
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lations at the finer grids. Note that the these numbers are all factors for 48, thus their results

can easily be sampled to the 483 grids for comparison. As in the 2-D case, the time step is

fixed at ∆t = 10−4 or 10−5. The domain size is 1× 1× 1. Thus ∆x = ∆y = ∆z = 1/n.

Like in the case of 2-D mesh refinement tests, the 2nd order spatial and first order temporal

order are established through these numerical experiments.

We then conduct a numerical experiment in which a piece of biofilms is sheared under

a constant velocity up to t = 2. The initial and final biofilm profiles are shown in Fig.3.9

and 3.10. The refinement results are summarized in Table.3.6 and 3.7 for the 2-D case,

and in Table.3.8 and 3.9 for the 3-D case. Temporally, all key values converges first-order.

Spatially, the stress τp converges first-order; its computed convergence rate is almost one,

and probably will converge to one at finer grid sizes. The EPS volume fraction φn and

velocity field v converge at the rate somewhere between the second order, as expected

by our discretization of the momentum equation, and the third order, as expected by the

WENO advection scheme that we use for the biomass volume fraction. The conclusion

applies to both the 2-norm and the infinity norm. The reduction of convergence rate for

some of the physical variable is the consequence of enhanced coupling among the elastic

stress and the other physical quantities. Since the scheme we adopt for the elastic stress τp

is first order along the "streamline", it is first order in both space and time. This reduced

accuracy propagates into the governing system so as to lower the order of other physical

variables. But, overall, the scheme shows what we designed it for, at least first order in

both space and time.
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Figure 3.7: 2-D mesh refinement of growing a biofilm. Profiles at t = 0 and t = 2.

φn c
∆x ‖err‖2 ratio order ‖err‖2 ratio order
1/32 1.29e-4 2.37e-5
1/64 4.40e-5 2.92 1.53 6.01e-6 3.94 1.98

1/128 1.29e-5 3.42 1.75 1.48e-6 4.06 2.00
1/256 3.11e-6 4.14 1.98 3.51e-7 4.22 2.01
1/512 6.24e-7 4.98 1.99 6.94e-8 5.06 2.02

1/1024 reference
∆x ‖err‖∞ ratio order ‖err‖∞ ratio order
1/32 8.50e-4 8.93e-5
1/64 4.42e-4 1.92 0.88 2.27e-5 3.94 1.97

1/128 1.20e-4 3.68 1.86 5.62e-6 4.04 2.00
1/256 3.04e-5 3.94 1.90 1.33e-6 4.21 2.00
1/512 6.08e-6 5.00 2.00 2.65e-7 5.04 2.01

1/1024 reference

τp v
∆x ‖err‖2 ratio order ‖err‖2 ratio order
1/32 3.87e+1 5.28e-7
1/64 1.33e+1 2.92 1.53 1.59e-7 3.32 1.72

1/128 3.84e+0 3.46 1.77 4.15e-8 3.84 1.92
1/256 9.15e-1 4.19 2.00 9.90e-9 4.19 1.99
1/512 1.82e-1 5.03 2.01 1.98e-9 5.01 2.00
1/1024 reference

∆x ‖err‖∞ ratio order ‖err‖∞ ratio order
1/32 4.06e+2 4.99e-6
1/64 2.13e+2 1.90 0.87 1.59e-6 3.13 1.64

1/128 5.90e+1 3.61 1.83 4.03e-7 3.95 1.96
1/256 1.49e+1 3.96 1.91 9.74e-8 4.14 1.98
1/512 3.00e+0 4.97 1.99 1.96e-8 4.97 1.99
1/1024 reference

Table 3.2: 2-D spatial refinement result for growing a biofilm with ∆t = 10−4
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φn c
∆t ‖err‖2 ratio order ‖err‖2 ratio order

1/200 1.02e-6 2.01e-6
1/400 4.99e-7 2.04 1.00 9.85e-7 2.04 1.00
1/800 2.39e-7 2.09 1.00 4.72e-7 2.09 1.00

1/1600 1.09e-7 2.19 1.00 2.16e-7 2.19 1.00
1/3200 4.44e-8 2.46 0.99 8.74e-8 2.47 1.00
1/10000 reference

∆t ‖err‖∞ ratio order ‖err‖∞ ratio order
1/200 5.20e-6 3.41e-6
1/400 2.55e-6 2.04 1.00 1.67e-6 2.04 1.00
1/800 1.22e-6 2.08 1.00 8.02e-7 2.08 1.00

1/1600 5.59e-7 2.19 1.00 3.66e-7 2.19 1.00
1/3200 2.27e-7 2.47 1.00 1.49e-7 2.47 1.00
1/10000 reference

τp v
∆t ‖err‖2 ratio order ‖err‖2 ratio order

1/200 8.28e+0 8.03e-8
1/400 4.05e+0 2.04 1.00 4.07e-8 1.97 0.95
1/800 1.94e+0 2.09 1.00 1.96e-8 2.08 0.99
1/1600 8.86e-1 2.19 1.00 8.91e-9 2.20 1.01
1/3200 3.59e-1 2.47 1.00 3.59e-9 2.48 1.01

1/10000 reference
∆t ‖err‖∞ ratio order ‖err‖∞ ratio order

1/200 4.62e+2 1.77e-6
1/400 2.20e+2 2.10 1.04 8.10e-7 2.19 1.11
1/800 1.06e+2 2.07 0.99 3.62e-7 2.24 1.12
1/1600 4.89e+1 2.18 0.99 1.59e-7 2.28 1.07
1/3200 1.98e+1 2.46 0.99 6.29e-8 2.52 1.04

1/10000 reference

Table 3.3: 2-D temporal refinement result for growing a biofilm with ∆x = 1/1024
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Figure 3.8: 3-D mesh refinement of growing a biofilm. Profiles at t = 0 and t = 2.

φn c
∆x ‖err‖2 ratio order ‖err‖2 ratio order
1/48 3.78e-5 7.84e-6
1/96 8.57e-6 4.41 1.94 1.70e-6 4.60 2.01

1/144 3.03e-6 2.83 1.86 5.77e-7 2.96 2.00
1/192 9.68e-7 3.13 1.94 1.82e-7 3.16 2.00
1/240 reference
∆x ‖err‖∞ ratio order ‖err‖∞ ratio order
1/48 5.02e-4 4.64e-5
1/96 1.09e-4 4.61 2.01 1.01e-5 4.59 2.01

1/144 3.69e-5 2.95 2.00 3.41e-6 2.96 2.00
1/192 1.17e-5 3.16 2.00 1.08e-6 3.16 2.01
1/240 reference

τp v
∆x ‖err‖2 ratio order ‖err‖2 ratio order
1/48 1.27e+1 1.92e-7
1/96 3.32e+0 3.82 1.69 4.90e-8 3.91 1.73

1/144 1.21e+0 2.74 1.73 1.71e-8 2.86 1.89
1/192 3.92e-1 3.09 1.88 5.49e-9 3.12 1.93
1/240 reference
∆x ‖err‖∞ ratio order ‖err‖∞ ratio order
1/48 2.38e+2 3.90e-6
1/96 5.53e+1 4.30 1.90 9.14e-7 4.27 1.88

1/144 1.96e+1 2.82 1.84 3.14e-7 2.92 1.96
1/192 6.28e+0 3.13 1.94 9.96e-8 3.15 1.98
1/240 reference

Table 3.4: 3-D spatial refinement result for growing a biofilm with ∆t = 10−4
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φn c
∆t ‖err‖2 ratio order ‖err‖2 ratio order

1/200 9.90e-7 1.62e-6
1/400 4.85e-7 2.04 1.00 7.96e-7 2.04 1.00
1/800 2.33e-7 2.09 1.00 3.82e-7 2.08 0.99

1/1600 1.06e-7 2.19 1.00 1.76e-7 2.17 0.99
1/3200 4.31e-8 2.47 1.00 7.22e-8 2.44 0.97
1/10000 reference

∆t ‖err‖∞ ratio order ‖err‖∞ ratio order
1/200 6.56e-6 3.16e-6
1/400 3.25e-6 2.02 0.98 1.55e-6 2.03 0.99
1/800 1.56e-6 2.08 0.99 7.47e-7 2.08 0.99

1/1600 7.15e-7 2.18 1.00 3.43e-7 2.18 0.99
1/3200 2.90e-7 2.47 1.00 1.40e-7 2.44 0.98
1/10000 reference

τp v
∆t ‖err‖2 ratio order ‖err‖2 ratio order

1/200 8.13e-1 7.08e-8
1/400 3.99e-1 2.04 1.00 3.27e-8 2.16 1.09
1/800 1.91e-1 2.09 1.00 1.49e-8 2.20 1.09
1/1600 8.72e-2 2.19 1.00 6.61e-9 2.25 1.05
1/3200 3.53e-2 2.47 1.00 2.64e-9 2.50 1.03

1/10000 reference
∆t ‖err‖∞ ratio order ‖err‖∞ ratio order

1/200 7.65e+0 1.89e-6
1/400 3.76e+0 2.03 0.99 8.65e-7 2.18 1.10
1/800 1.81e+0 2.08 1.00 3.84e-7 2.25 1.13
1/1600 8.26e-1 2.19 1.00 1.67e-7 2.29 1.08
1/3200 3.34e-1 2.47 1.00 6.61e-8 2.53 1.05

1/10000 reference

Table 3.5: 3-D temporal refinement result for growing a biofilm with ∆x = 1/240

66



www.manaraa.com

Figure 3.9: 2-D mesh refinement of shearing a biofilm. Profiles at t = 0 and t = 2.

φn τp v
∆x ‖err‖2 ratio order ‖err‖2 ratio order ‖err‖2 ratio order
1/32 8.29e-4 4.98e-4 5.25e-3
1/64 3.54e-4 2.34 1.20 2.78e-4 1.79 0.76 1.63e-3 3.22 1.68

1/128 1.15e-4 3.07 1.58 1.42e-4 1.96 0.84 3.65e-4 4.46 2.14
1/256 2.30e-5 5.02 2.28 6.55e-5 2.16 0.85 6.00e-5 6.08 2.57
1/512 2.31e-6 9.95 3.16 2.32e-5 2.82 0.87 9.62e-6 6.24 2.39

1/1024 reference
∆x ‖err‖∞ ratio order ‖err‖∞ ratio order ‖err‖∞ ratio order
1/32 7.55e-3 5.79e-3 2.67e-2
1/64 4.72e-3 1.60 0.56 4.08e-3 1.42 0.31 8.69e-3 3.07 1.61

1/128 2.09e-3 2.26 1.09 2.47e-3 1.65 0.51 2.12e-3 4.10 2.02
1/256 5.79e-4 3.60 1.76 1.29e-3 1.92 0.61 3.83e-4 5.54 2.43
1/512 7.55e-5 7.66 2.74 5.01e-4 2.57 0.65 6.44e-5 5.95 2.31

1/1024 reference

Table 3.6: 2-D spatial refinement result for shearing a biofilm with ∆t = 10−5

φn τp v
∆t ‖err‖2 ratio order ‖err‖2 ratio order ‖err‖2 ratio order

1/1250 4.11e-5 1.41e-5 1.66e-4
1/2500 2.04e-5 2.02 0.99 7.14e-6 1.97 0.96 8.15e-5 2.03 1.01
1/5000 9.95e-6 2.05 1.00 3.52e-6 2.03 0.98 3.96e-5 2.06 1.00

1/10000 4.71e-6 2.11 1.00 1.68e-6 2.10 0.99 1.88e-5 2.11 1.00
1/20000 2.09e-6 2.25 1.00 7.48e-7 2.24 0.99 8.33e-6 2.25 1.00

1/100000 reference
∆t ‖err‖∞ ratio order ‖err‖∞ ratio order ‖err‖∞ ratio order

1/1250 1.74e-4 1.89e-4 6.33e-4
1/2500 8.59e-5 2.03 1.00 9.93e-5 1.90 0.90 3.09e-4 2.05 1.02
1/5000 4.17e-5 2.06 1.00 4.99e-5 1.99 0.95 1.49e-4 2.07 1.01

1/10000 1.97e-5 2.12 1.00 2.40e-5 2.08 0.97 7.05e-5 2.12 1.01
1/20000 8.75e-6 2.25 1.00 1.08e-5 2.23 0.99 3.13e-5 2.25 1.00

1/100000 reference

Table 3.7: 2-D temporal refinement result for growing a biofilm with ∆x = 1/1024
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Figure 3.10: 3-D mesh refinement of shearing a biofilm. Profiles at t = 0 and t = 2.

φn τp v
∆x ‖err‖2 ratio order ‖err‖2 ratio order ‖err‖2 ratio order
1/48 1.90e-4 1.26e-4 1.53e-3
1/96 4.79e-5 3.96 1.75 5.52e-5 2.29 0.67 3.53e-4 4.32 1.90

1/144 1.49e-5 3.21 2.28 2.53e-5 2.18 0.87 1.13e-4 3.13 2.19
1/192 4.15e-6 3.59 2.69 9.65e-6 2.62 0.89 3.36e-5 3.36 2.33
1/240 reference
∆x ‖err‖∞ ratio order ‖err‖∞ ratio order ‖err‖∞ ratio order
1/48 5.62e-3 3.51e-3 1.18e-2
1/96 2.10e-3 2.68 1.01 1.78e-3 1.97 0.31 3.07e-3 3.83 1.69

1/144 8.26e-4 2.54 1.46 8.83e-4 2.02 0.55 9.75e-4 3.14 2.21
1/192 2.63e-4 3.14 1.97 3.38e-4 2.61 0.87 2.73e-4 3.57 2.66
1/240 reference

Table 3.8: 3-D spatial refinement result for shearing a biofilm with ∆t = 10−5

φn τp v
∆t ‖err‖2 ratio order ‖err‖2 ratio order ‖err‖2 ratio order

1/250 6.07e-5 1.76e-5 4.46e-4
1/500 2.98e-5 2.04 1.02 9.36e-6 1.88 0.91 2.11e-4 2.11 1.08
1/1000 1.47e-5 2.03 1.02 4.91e-6 1.91 0.92 1.02e-4 2.07 1.04
1/2000 7.18e-6 2.04 1.02 2.50e-6 1.96 0.96 4.98e-5 2.05 1.02
1/4000 3.48e-6 2.06 1.01 1.24e-6 2.01 0.98 2.42e-5 2.05 1.01
1/8000 1.66e-6 2.10 1.01 5.98e-7 2.07 0.99 1.16e-5 2.09 1.00
1/16000 7.54e-7 2.20 1.01 2.74e-7 2.18 0.99 5.28e-6 2.19 1.00
1/100000 reference

∆t ‖err‖∞ ratio order ‖err‖∞ ratio order ‖err‖∞ ratio order
1/250 7.38e-4 3.82e-4 6.41e-3
1/500 3.57e-4 2.07 1.04 2.00e-4 1.91 0.93 2.70e-3 2.38 1.25
1/1000 1.73e-4 2.06 1.04 1.16e-4 1.73 0.77 1.17e-3 2.31 1.20
1/2000 8.40e-5 2.06 1.03 6.16e-5 1.88 0.89 5.37e-4 2.17 1.11
1/4000 4.05e-5 2.08 1.03 3.13e-5 1.97 0.94 2.55e-4 2.10 1.05
1/8000 1.92e-5 2.11 1.02 1.52e-5 2.05 0.97 1.21e-4 2.11 1.02
1/16000 8.70e-6 2.20 1.01 7.01e-6 2.17 0.99 5.49e-5 2.20 1.01
1/100000 reference

Table 3.9: 3-D temporal refinement result for growing a biofilm with ∆x = 1/240
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3.7 VISUALIZING A STRESS FIELD

Since stress is a two dimensional tensor, visualizing a stress field takes a little more

work than visualizing a scalar or vector field. Given a symmetric stress τ , and a surface

normal to a unit vector n, the traction vector on that plane τ (n) := τ ·n can be decomposed

into the normal component and the shear component, τ (n) = τ
(n)
normal + τ

(n)
shear where τ (n)

normal

is the traction vector in n direction and τ (n)
shear is the traction vector perpendicular to n.

For a viscous flow in the x direction with the velocity gradient in the y direction, the

shear stress is given by τxy = τ
(y)
shear. Without an imposed shear, however, there might not

be a principal flow direction. In this situation, there is no reason why the x-y basis would be

more special than any other orthonormal basis. Thus, τxy does not have a special meaning

like earlier.

One can take the eigenvalue decomposition τ = QΛQ−1 where Λ = diag(σ1, σ2, σ3)

with σ1 ≥ σ2 ≥ σ3 and Q = [n1,n2,n3]. Then, Q is called the principal frame, σi the

principal stresses, and ni the corresponding principal directions. These directions have the

following properties [7] [2],

• The maximum normal stress, max
n

τ
(n)
normal, is given by σ1. It occurs in the direction

n = n1.

• The minimum normal stress is min
n
τ

(n)
normal = σ3. It occurs in the direction n3.

• The maximum shear stress is τmax := max
n

τ
(n)
shear = 1

2(σ1 − σ3). It occurs on the

plane that bisects n1 and n3.

At each point in space, a symmetric stress τ can be represented by an ellipse in the

2-D or an ellipsoid in the 3-D, with its axes aligned with the principal directions and axis

lengths proportional to the absolute values of the principal stresses |σi|. This yields an

intuitive visualization of the stress. However, when some principal stresses are negative,
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the plot can be misleading since a positive and a negative value of the principal stress can

yield the same ellipsoid.

In an incompressible flow, the isotropic part of the stress does not affect the hydrody-

namics since it is balanced by the pressure. Therefore, each individual principal stress σi

is not as important as their differences σi − σj . Therefore, we visualize the hydrodynami-

cally relevant part of the stress by plotting the max shear stress 1
2(σ1 − σ3) and the major

principal direction n1.
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CHAPTER 4

NUMERICAL SIMULATION AND DISCUSSIONS

We study the dynamics of the biofilm-solvent interaction in both 2-D and 3-D geome-

tries. Periodical boundary conditions are imposed on all physical unknowns except in

the y-direction, where physical boundary conditions are imposed. We run the simula-

tions under two different time scales: one is the biomass growth time scale and the other

the flow-induced time scale. Biofilms grow under the biomass growth characteristic time

t0 = 1000 sec. In this regime, the corresponding dimensionless parameter values are,

1
Res

= 1002, 1
Ren

+ 1
Reps

= 1× 107, Λ1 = 1.10, Λ = 1× 10−9,

Γ1 = 33.467, Γ2 = 1.29× 106, Ds = 2.3,

A = 4.85× 103, µ = 0.40, Kc = 0.0425, K1 = 0.0425.

Biofilms are sheared under a much shorter flow induced characteristic time t0 = 1 sec. The

corresponding dimensionless parameter values are,

1
Res

= 1.002, 1
Ren

+ 1
Reps

= 1× 104, Λ1 = 1100, Λ = 1× 10−6,

Γ1 = 3.347× 10−5, Γ2 = 1.29, Ds = 2.3× 10−3,

A = 4.85, µ = 4.00× 10−4, Kc = 0.0425, K1 = 0.0425.

Table 4.1 lists the range of the dimensional parameter values used in our simulations.

In these situations, in order to investigate how the EPS elasticity can impact the biofilm

growth process and its hydrodynamics under an imposed shear, we conduct a comparative

study to contrast the model prediction of the viscoelastic model versus the corresponding

viscous model while the total biomass viscosity is kept the same. In the purely viscous
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Symbol Parameter value Unit
T Temperature 303 Kelvin
γ1 Distortional energy coefficient 8× 106 m−1

γ2 Mixing free energy coefficient 3× 1017 m−3

χ Flory-Huggins parameter 0.55
λ Mobility parameter 1× 10−9 kg−1m3s
N Generalized polymerization parameter 1× 103

Ds Substrate diffusion coefficient 2.3× 10−9 m2s−1

A Max. Consumption rate 4× 10−2 kg m−3s−1

µ Max. Production rate 4× 10−4 s−1

kc Monod constant for gn 3.5× 10−4 kg m−3

k1 Monod constant for gc 3.5× 10−4 kg m−3

λ1 Elastic relaxation time of EPS 1100 s
a Slip coefficient 0.95
α Damping coefficient in Giesekus model 0.02
ηn Dynamic viscosity of EPS

}
ηn + ηps = 10. kg m−1s−1

ηps Dynamic viscosity of bacteria
ηs Dynamic viscosity of solvent 1.002× 10−3 kg m−1s−1

ρn Network density 1× 103 kg m−3

ρs Solvent density 1× 103 kg m−3

c0 Characteristic substrate concentration 8.24× 10−3 kg m−3

h Characteristic length scale 1× 10−3 m
t0 Characteristic time scale 1 or 1, 000 s
Lx, Ly, Lz size of computation domain 1− 3× 10−3 m
Mx,My,Mz Number of sub-intervals in each direction 16− 1024

Table 4.1: Parameter values used in the simulations

case, we fix a value for the Reynolds number Reps and let 1/Ren = 0. In the viscoelastic

case, we let 1/Ren + 1/Reps = 1/Repurely-viscous
ps . In the results presented below, we pick

1/Ren = 1/Reps = 1/(2Repurely-viscous
ps ). The elastic stress constitutive equation utilizes

either the network velocity vn or the average velocity v for the transport and deforma-

tion. For brevity, we call the former “viscoelastic-N” and the latter “viscoelastic-A” model,

respectively.

72



www.manaraa.com

4.1 GROWTH DYNAMICS OF BIOFILMS

2-D biofilm growth dynamics

We simulate the growth of a small bud of biofilm under the characteristic time scale

t0 = 1000 sec until tend = 300, which corresponds to roughly 3.5 days in reality. The nu-

merical simulations are carried out on a 512×512 grid. The initial biofilm profile is shown

in Fig.4.1. It grows into the final results shown in Fig.4.2. All three models (viscous,

viscoelastic A and N) yield almost identical biofilm shapes and volume fraction distribu-

tions. In fine details, the biofilm profile given by the viscous and viscoelastic A model are

identical which differs slightly from that of the viscoelastic N model. The three models

yields very similar nutrient profiles, and the locations and rates of growth and nutrient con-

sumption. Most growth and consumption occur near the biofilm-solution interface, where

nutrient gets consumed quickly, thus cannot penetrate far into the biofilm. As additional

biomass is produced during growth, it gets redistributed by the Modified Cahn-Hilliard

dynamics to lower the global sum of the free energy. Fig.4.3 shows the flux of biomass mi-

grating away from the high-growth region near the interface, expanding outward toward the

solution. At the same time, the solution penetrates back into the biofilm causing the biofilm

to swell up and cover a larger region. This accelerates the biofilm growth by increasing the

surface area and bringing it closer to the nutrient source.

The biomass movement causes the EPS to elongate and deform evidenced in the vis-

coelastic models, thus generating elastic stresses. In a growing biofilm, the average velocity

is quite small shown in Fig.4.3. Therefore, the biomass velocity vn = v− λ∇ δf
δφn

is dom-

inated by the excessive component −λ∇ δf
δφn

, which is instantiated by molecular mixing

between the small solvent molecule and the large EPS molecule and bacterial cell and car-

ried out in the direction of ±∇φ. Thus, the biomass migrates mostly along the volume

fraction gradient, compressing and elongating the EPS in this direction. Consequently, the

viscoelastic-N model shows a strong non-isotropic normal stress in τn in the direction of the
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volume fraction gradient, as illustrated in Fig.4.4. In contrast, the EPS in the viscoelastic-A

model is deformed by the average velocity v and its gradient, which is very weak in this

setting. Hence, the elastic stress τn is essentially isotropic, and originates mostly from the

biomass growth in the viscoelastic A model. Such isotropic stress is balanced out by the

pressure in the incompressible system. Thus, despite its potentially high principal elastic

stress, the viscoelastic-A model shows a relatively weak flow field and little viscous stress

comparing to the viscoelastic-N model.

Both viscoelastic models, which contain a large elastic principal component, show a

much higher pressure than the purely viscous model. This is because pressure exists essen-

tially as a reaction to other forces in the system. Therefore, the pressure gradient generally

has roughly the same strength as the strongest remaining force in the system. In viscoelas-

tic models, the pressure is of the same strength as the elastic stress. In viscous-only model

the pressure gradient is of the same strength as the force due to the Modified Cahn-Hilliard

dynamics, which is weaker than the force due to the elastic stress by 1-2 order of magni-

tude.

To better emulate the spatial heterogeneity of the real biofilm, we compute the growth

of scattered bits of biomass on a 512 × 1536 grid using the viscoelastic-N model. This

produces a biofilm that grow into a finger formation, as shown in Fig.4.5. As in the previous

case, biomass growth and nutrient consumption occur mostly near the biofilm-solution

interface. It is worth pointing out that the nutrient concentration is low not only deep

inside the biofilm, but also in the channels/cavities between biofilm lumps, as illustrated in

Fig.4.6. The nutrient consumption deep in the channels is a consequence of the nutrient

diffusion and consumption by nearby biomass. This situation will be mitigated either by

a reduced consumption rate or by a reduced nutrient diffusion rate, which in return will

retard the biomass growth. The tallest bud shows the highest growth rate and nutrient

consumption rate, yet it does not become much taller than other buds due to the limited

availability of nutrient.
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The biomass flux is again strongest on the biofilm-solution interface, as illustrated in

Fig.4.7. Note that the flux on the top interface is stronger than that on the side interface.

This is likely due to the higher growth rate on the top interface and more readily available

nutrient, which necessitates more biomass movement in order to settle into a free-energy

equilibrium. The region of high elastic stress coincides with the region of high biomass

flux, since the network velocity and flux are the primary causes of of the elastic stress. The

viscous stress is an order of magnitude weaker than the elastic stress in the simulations. As

Fig.4.7 shows, the net force due to elastic stress is stronger than the net force due to viscous

stress, both of which are more than an order of magnitude stronger than the interfacial force

due to fluid mixing. Both the elastic force and the interfacial force switch directions across

the biofilm interface. The elastic force tries to squeeze the interface thinner, while the

interfacial force tries to pull the interface wider. The viscous stress force is unidirectional

and does not show such a trend.

3-D biofilm growth dynamics

In 3-D geometries, we simulate biofilm growth on a 2 × 1 × 2 domain with 256 ×

128 × 256 grid, while other parameters are kept the same as in the 2-D settings. The 3-D

results are qualitatively the same as the 2-D results and of course with more heterogeneous

details in the additional direction. All three models produce similar final biofilm profiles.

A small bud of biofilm grows into a ball of mushroom shape as shown in Fig.4.9. Scattered

bits of biomass grow in to one large connected colony of biofilm intertwined with water

channels, as shown in Fig.4.10. Some small bits merge together and grow into a large lobe,

while most medium-size bits retain their own identity and do not completely merge with

their neighbors. They maintain an interface separating them from their neighbors by water

channels. The heterogeneity in biofilm structure is a noticeable feature of biofilms.
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4.2 BIOFILM DYNAMICS IN SHEAR FLOWS

2-D biofilms in shear flows

We take the biofilms grown in the previous section as the initial data, then apply a shear

velocity of 1 mm/s at the top boundary, which corresponds to the nondimensional value of

vshear = 1 with the characteristic time scale t0 = 1s. We apply shear from time t = 0

until t = 200. The shear velocity ramps up linearly from t = 0 to t = 10, stays constant

until t = 190, then ramps down linearly until stop at t = 200. We keep the simulation

running until t = 800 to observe further biomass movements. In this setting, the average

velocity v and the network velocity vn are almost identical. Thus, the viscoelastic-N and

viscoelastic-A models yield the same result. Therefore, we only compare the results of the

viscous model and the viscoelastic-N model.

We first shear the biofilm grown from scattered bits. The results are presented in

Fig.4.11. Compared to the viscous model, the biofilm in the viscoelastic model distorts

more under the shear flow. This is because the elastic stress initially offers no resistance at

all to the shear. Only after the biofilm has been strained by some significant amount would

it start to show a substantial elastic stress to counter the force of the shearing fluid.

The pressure concentrates mostly on the base corners of the biofilm. The upstream

corner has a negative pressure, showing that it is being pulled. The downstream corner

has a positive pressure, showing that it is being compressed. As Fig.4.11 shows, the tallest

biofilm lobe experiences the highest elastic stress. Interestingly, the middle lobe experi-

ences significant stress on its upstream interface, even though that interface is not directly

in contact with the strong shear flow. While shearing, the faint streaming biomass has its

principal directions for both the elastic stress and viscous stress at roughly 45◦, which is

the principal direction of the rate of strain tensor D.

Just after the shear stops (t = 200), the viscous model predicts little remaining viscous

stress, most of which is at the base of the biofilm. This stress quickly subsides, and the
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biofilm’s hydrodynamic stays mostly static in the absence of shear. The viscous model pre-

dicts that the biofilm essentially stops moving after the imposed shear ceases. In contrast,

the viscoelastic model predicts that the biofilm gradually recoils back partially toward the

original position. The elastic stress tries to contract the fluid along its principal stress di-

rection. The incompressibility condition, in turn, causes the fluid to expand in the direction

perpendicular to the contraction. This induces a flow throughout the biofilm, which in turn

induces the viscous stress. Fig.4.12 illustrates this mechanism. It can be seen that the lo-

cation of high viscous stress coincides with the location of high elastic stress, and that the

viscous stress tends to have its principal direction perpendicular to that of the elastic stress.

The net elastic force, net viscous force, and net MCH force are strongest near the

biofilm-solution interface, as illustrated in Fig.4.11. This is surprising at first, since the

stress is distributed throughout the biofilm, so intuition tells us that their corresponding

forces should act throughout the biofilm body. After a moment of reflection, one realizes

that these forces are indeed strong inside the biomass. However, they are canceled out by

an equally strong force in the opposite direction, leaving the net forces to be small inside

the biomass. Near the biofilm interface, these opposing forces have unequal strength, since

the elastic stress and bacterial viscous stress exist only in the biomass, thus we observe a

high net force there.

We also shear the mushroom-shaped biofilm that we grew earlier. The result, presented

in Fig.4.14, shows an interesting scenario where the tip of a biofilm bud stretches out due

to the shear, and sticks to a different part of the biofilm. Consequently, the biofilm cannot

recoil back as much as in the previous case. The pressure is low inside the mushroom

bud, especially at its upstream neck which is being pulled by the shear. The bud is pushed

against its downstream shoulder, creating a high pressure at the place they fuse. The tip of

the bud stretches out due to the shear, creating high viscous and elastic stresses.
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3-D biofilms in shear flows

For comparison, we also simulate sheared mushroom-shaped biofilms in 3-D. The re-

sult is similar to the 2-D setting for the most part, but the downstream side of the mushroom

develops a tip in the viscous model, and a streamer nose in the viscoelastic model. This

nose extends out from the main body and streams along with the flow, then partially retracts

back once the imposed shear ceases. This happens because the 3-D geometry allows the

fluid to flow around the sides of the mushroom and form a confluence on its downstream

side. This confluence shears the biomass into a tip or a nose. The elastic stress offers less

initial resistance to shear, thus the viscoelastic model predicts a biofilm that more readily

elongates into a nose than that predicted by a viscous model. Once the nose develops, it

continues to be sheared on all sides, thus maintaining its length against the elastic recoil.

We did not observe this kind of tip and streamer nose during the 2-D shear. In a 2-D geom-

etry, the fluid can strongly shear such a nose only on the top side. The bottom side would

be a cavity with a relatively weak flow field. In addition, 2-D simulation can be regarded

as a cross-section of the 3-D cylindrical geometry, which perhaps carry quite different hy-

drodynamic response to the truly 3-D closed shape carried out in the 3-D simulation.

The amount of biomass recoil in the viscoelastic model varies by cases. Fig.4.16 shows

the results of shearing the 3-D biofilm colony that we have earlier grown from scattered bits.

As expected, the viscous model predicts a biofilm that deforms less under the shear than

that in the viscoelastic model. Surprisingly, the viscoelastic model predicts a biofilm that

recoils back by only an extremely small amount. It appears that each biomass bud becomes

stuck to the side of its neighboring buds in a similar fashion to the 2-D mushroom-shaped

biofilm in Fig.4.14, thus creating a resistance to the recoiling force. We try shearing another

colony of biofilm, with shorter and less number of buds. This way, each bud is less likely

to be stuck to the side of its neighbor. As illustrated in Fig.4.17, the viscoelastic model

predicts that this new colony of biofilm will recoil back partially as expected.

In order to observe how the elasticity affects detachment process, we shear an artificial
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top-heavy biofilm with a thin neck, as illustrated in Fig.4.18. The shear rate is 10 times that

of the previous cases. Detachment occurs sooner in viscoelastic models than in the purely-

viscous model. This agrees with the earlier observation that elastic stress does not offer

as much resistance to an applied shear as the viscous stress. For the viscoelastic case, we

run numerical simulations for both the Giesekus model and the Phan-Thien-Tanner model

of the elastic stress. They produce almost identical results. This phenomenon has to be

understood in the context that the overall viscosity of the material is held constant in the

simulation. The viscoelastic material is shear thinning and therefore the viscosity tends to

be small under shear.

Figure 4.1: Initial biomass volume fraction φn profile.
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Variable Viscous Viscoelastic-N Viscoelastic-A

φn

c

gc

gn

Figure 4.2: Biomass volume fraction φn, nutrient concentration c, nutrient consumption
rate gc, and biomass production rate gn in the simulation of a growing bud of biofilm at
t = 300. Results from three models (viscous, viscoelastic A & N) are contrasted. In these
simulations, the three models give qualitatively and quantitatively the same results for all
growth-related quantities.
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Variable Viscous Viscoelastic-N Viscoelastic-A

v

biomass
flux φnvn

p

Figure 4.3: Velocity v, biomass flux φnvn, and pressure p in the simulation of a growing
bud of biofilm. Roll cells form within the biofilm colony above the neck region. Both vis-
cous and viscoelastic-A models predict quantitatively the same average velocity; whereas
the viscoelastic-N model yields a slightly different average velocity. The pressure devia-
tions in both viscoelastic models are much higher than in the viscous model.
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Variable Viscoelastic-N Viscoelastic-A
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for τn

Principal
stress
direction
for τn

Figure 4.4: Elastic stress distributions. Sec.3.7 explains the terms and the meaning of each
plot. The major principal direction is shown by the counterclockwise angle from the x
axis. This value is meaningful only in the regions where the max shear stress is non-zero.
Both viscoelastic models predict that the elastic stress concentrate mostly on the biofilm
interface. The viscoelastic-N model predicts a stress that is in the direction of volume
fraction gradient, while the viscoelastic-A model predicts an almost isotropic stress, which
is balanced out by the pressure.
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Figure 4.5: Snapshots of the simulation of a growing randomly scattered bits of biofilm on
the 512 × 1536 grid. The biofilm grows into a finger formation. As each colony grows
toward the top where the nutrient is fed, smaller colonies merge into bigger ones.
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c

gc

gn

Figure 4.6: The left and right colonies grow faster than those in the middle since it can
access nutrient through larger interfacial areas on the left/right of the biofilm interface in
addition to the top interface. The tallest bud shows the highest growth rate and nutrient
consumption rate, yet does not become much taller than other buds.
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Max
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Principal
stress
direction
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Figure 4.7: The biomass flux and elastic stress follow the same pattern as in the case of
growing a bud of biofilm. Note that the elastic stress is higher on the top interface than
on the sides because the top has higher biomass flux. Bacterial viscous stress φnτps are
shown by its max shear stress and principal direction (explain in Fig.4.4). We avoid using
the ellipsoid plot for viscous stresses since it can be misleading.
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Figure 4.8: Net forces in a growing colony of biofilm. They are of the same order of
magnitudes as in the case of growing a bud of biofilm. Both the net elastic force and the
net interfacial force switch directions at the biofilm interface. The net elastic force tries to
squeeze the interface thinner, while the net MCH force tries to pull the interface wider. The
net viscous force does not show such a trend.
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Time Viscous Giesekus

0

300

Figure 4.9: Growing a bud of biofilms in 3-D. The viscous and viscoelastic models yield
similar results, with the biomass growing into a mushroom-shaped bud. The translucent
layers show nutrient contour.

Time Viscous Giesekus

0

150

300

Figure 4.10: Snapshots of growing scattered bits of biofilms in 3-D
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Variable Viscous at t = 200 Giesekus at t = 200 Giesekus at t = 800

φn

φn

v

p

Figure 4.11: Biomass volume fraction φn, average velocity v, and pressure p. The second
row show log plots of φn, in which a streaming layer of faint biomass can be seen (φn ≈
10−6). The pressure concentrates mostly on the corners of biofilm bases.

Variable Viscous at t = 200 Giesekus at t = 200 Giesekus at t = 800

Max shear
stress
for τn

Principal
direction

Max shear
stress
for φnτps

Principal
direction

Figure 4.12: Elastic stress τn and bacterial viscous stress φnτps. Please see Fig.4.4 for an
explanation of the terms. The tallest bud has the highest elastic stress. In the principal
direction plots, the stream line above the main biofilm profile is caused by the stream
of faint biomass shown in Fig.4.11. In the presence of an imposed shear, the stress in
this streaming biomass has the principal direction at 45◦, which is the principal direction
of the rate of strain tensor D. In the viscous model, the viscous stress and the velocity
diminish soon after the shear ceases. In viscoelastic models, during the biomass recoil,
the region with high viscous stress coincides with the region with high elastic stress, while
their principal directions are perpendicular to each other.
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Variable Viscous at t = 200 Giesekus at t = 200 Giesekus at t = 800

net
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force
net
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force

net MCH
force

Figure 4.13: Forces in the momentum equation. The net elastic force and net viscous
force are of comparable magnitudes. The net interfacial force is weaker by 2-3 orders of
magnitude.

Variable Viscous at t = 200 Giesekus at t = 200 Giesekus at t = 800

φn

p

Max shear
stress
for τn
Max shear
stress
for φnτps

Figure 4.14: Shearing the biofilm grown from a small bud. The tip of the bud stretches and
then rubs against the shoulder on the right. This creates a region of high stress, and thus
also generate high pressure. The bud sticks to the shoulder and does not recoil back even
in the viscoelastic model.
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Figure 4.15: Shearing of a 3-D biofilm grown from a bud. The viscoelastic model predicts
that a nose of the biomass extends out and streams along with the flow. This nose partially
retracts back when we stop imposing the shear.
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Figure 4.16: Shearing of a 3-D biofilm grown from scattered bits. The viscoelastic model
predicts a biofilm that sways more under the flow than that in the viscous model. Interest-
ingly, the viscoelastic biofilm does not recoil back because each lobe becomes stuck to the
next lobe.
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Figure 4.17: Shearing of a 3-D colony of biofilm with fewer buds. The colony contains
fewer lobes, each of which is shorter than those in Fig.4.16, thus each lobe does not become
stuck to its neighbor. The biofilm recoils back more than that in Fig.4.16.
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Time Viscous Giesekus Phan-Thien-Tanner
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Figure 4.18: Shearing an biofilm lump with a thin neck. The biofilm colony detaches at
high shear rates.
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CHAPTER 5

CONCLUSION

We have extended the biofilm model from [75] [76] to account for viscoelasticity. The

phase field method allows us to use one set of constitutive equations for the whole do-

main, easing the numerical implementation in resolving the biofilm-solution interface by

allowing the biofilm-solution interface to be handled in the same way as the rest of the do-

main rather than imposing an interface tracking method. The model explores the biomass

growth by nutrient consumption and solvent molecule penetration via fluid mixing. The

biofilm and surrounding fluid flow interaction, transport through advection, dissipation,

and reaction together with nutrient transport are studied in a channel flow geometry. EPS

elasticity and its implication to the biofilm dynamics are investigated on vastly different

timescales, spanning from seconds to days via 2-D and 3-D numerical solvers, developed

for this purpose specifically.

We presented a numerical scheme for this model based on the finite difference method

on the staggered grid. The Navier-Stokes equation is solved by the Gauge-Uzawa method,

modified to take advantage of the fast Fourier transform and the interface coupling. The

stress constitutive equation is converted into a difference form that can be quickly solved

by a back interpolation followed by an explicit updating rule. The remaining equations are

discretized by the implicit method and solved iteratively by the BiCG-stab method. The

drastic change in viscosity from the biomass to the ambient solution fluid poses severe nu-

merical difficulties in solving the Navier-Stoke equation and the viscoelastic constitutive

equation accurately at a moderate time step size. We identified these issues and presented

methods for mitigating or overcoming them. As a result, we have to settle with an overall

94



www.manaraa.com

lower order scheme for the mixture fluid. A potential solution for this problem is to aban-

don the strategy of using FFT to solve the Helmholtz equation in the semidiscrete system.

Instead, we can use an iterative solver to solve the linear system of variable coefficient with

a choice of a good pre-conditioner.

We analyzed the discerete model’s numerical properties and implemented the scheme

on a hybrid CPU/GPU system. In order to efficiently utilize GPU’s resources, we designed

our code and data structure so that memory are accessed in a coalesced manner, and avoid

the bottleneck of the CPU-GPU data transfer. We use this code to explore the process of

biofilms growth and its dynamics under shear, in both two and three space dimensions.

Results from the viscoelastic model are compared to those from the viscous model.

Both models predict similar results for growing biofilms, since this timescale is longer

than the elastic relaxation time and the viscous effect dominates. Biofilms are sheared

under a much shorter flow-induced time scale. The model predicts that the elastic stress

offers less initial resistance to deformation than the viscous stress. This allows a part of the

viscoelastic biofilm to elongate and stream along the shearing direction in 3-D simulations.

Once we stop the shear, the viscoelastic model shows that the biofilm partially recoils back

to its original shape, while the viscous-only model predicts that the biofilm simply stops

moving.

We have used numerical computation to investigate and compare the predictions of a

viscous and viscoelastic biofilm models. This methodology allows researchers to query

and visualize variables in a model, which include the important physical quantities such as

biomass volume fraction, nutrient concentration, and the fluid fields of the biofilm compo-

nents, thus gaining a more intimate understanding of the model. We hope that this work

provide a foundation on which more details and other constitutive equations can be added

in, and then used to investigate other biofilm-related phenomena of interest such as cell

migration and quorum sensing [33].
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APPENDIX A

SOLVING THE HELMHOLTZ EQUATION BY DFT

We use the discrete Fourier transform (DFT) to solve the discretized form of the Helmholtz

equation,

∇2u− λu = g. (A.1)

Our numerical scheme for the biofilm simulation only uses the case where λ is zero or a

small positive number. Note that the sign of λ is opposite of that in the standard Helmholtz

equation that is used to solve a hyperbolic system. Our value λ comes from the Navier-

Stokes equation, which is parabolic. Regardless, we implement the solver for the general

case where λ can be almost any constant value. We start by listing some notations and

facts,

• Let CN = {u := (ui)i∈Z | ui ∈ C and ui = ui+N for all i ∈ Z} denote the set of N -

periodic complex-valued data.

• For any operator T : CN → CN , we use the shorthand Tn(u) := (T (u))n.

• DFT is an operatorCN → CN defined by DFTk u := (DFTu)k := ∑N−1
n=0 une

i2πnk/N .

• For u, v ∈ CN , their circular convolutions is defined by (u ∗ v)n := ∑N−1
m=0 umvn−m.

• The circular convolution theorem states that, DFTk(u ∗ v) = (DFTk u)(DFTk v).
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A.1 ONE DIMENSION

Periodic boundary

First we solve (A.1) for the case of periodic boundary. All other boundary conditions

will be converted eventually to a periodic boundary problem. Let T : CN → CN be

the discrete laplacian operator Tn(u) = 1
h2 (un−1 − 2un + un+1), and let t ∈ CN be

1
h2 (−2, 1, 0, 0, · · · , 0, 1). Thus, Tu = t ∗ u. With u, g ∈ CN , start at the discretized

Helmholtz equation, we get,

Tu− λu = g (A.2)

t ∗ u− λun = gn (A.3)

(DFT t)(DFTu)− λDFTu = DFT g (A.4)

(DFTk t− λ)(DFTk u) = DFTk g (A.5)

(DFTk u) = (DFTk g)/(DFTk t− λ) (A.6)

u = DFT−1 ((DFT g)/(DFT t− λ)) . (A.7)

Note that,

DFTk t =
N−1∑
n=0

tne
i2πnk/N (A.8)

= 1
h2 (−2 + ei2πk/N + e−i2πk/N) (A.9)

= 1
h2 (−2 + 2 cos(2πk/N)) ≤ 0. (A.10)

Computing DFTk u in (A.6) requires a division by DFTk t−λ, thus has a singularity when

λ = DFTk t. The biofilm simulation only uses the case where λ ≥ 0, thus DFTk u is well-

defined except for the case λ = 0 and k = 0. Instead of computing DFT0 u by (A.6), if

we arbitrarily set DFT0 u = C, the final answer u is off by constant ūn = un + C/N .

The only time the biofilm code encounters λ = 0 is when it solves the pressure Poisson

equation (3.4), whose solution is defined only up to a shift by a constant. Therefore we

arbitrarily set DFT0u = 0.
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Staggered grid -- odd/even paddings

Regular grid -- odd/even paddings

Figure A.1: Odd/even extensions for grids with 4 data points

For a low wave number k, the term 1− cos(2πk/N) in (A.10) should not be computed

directly since we would lose some numerical accuracy. We compute this term via the half

angle formula 1− cos(x) = 2 sin2(x/2).

Homogeneous Dirichlet boundary

We now show how to solve (A.1) with the homogeneous Dirichlet boundary conditions.

Given an N -point staggered grid with variables u0, . . . , uN−1, as shown in Fig.A.1, the

boundary is located where u− 1
2

and uN− 1
2

would be. The homogeneous Dirichlet boundary

condition can be satisfied to the second order at the boundary by using ghost nodes u−1

and uN and solve, 

Tun − λun = gn for n = 0, . . . , N − 1

1
2(u−1 + u0) = 0

1
2(uN−1 + uN) = 0

(A.11)
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This system has N+2 variables and N+2 equations. One can check that this is equivalent

to solving the following system of 2N -periodic variables u ∈ C2N ,
Tun − λun = gn for n = 0, . . . , N − 1

u2N−1−n = −un for n = 0, . . . , N − 1
(A.12)

This, in turn, is equivalent to setting g2N−1−n := −gn for n = 0, · · · , N−1 and then solve,

Tun − λun = gn, for n = 0, . . . , 2N − 1. (A.13)

Thus, we can solve (A.11) by using odd extension and then treat the problem as a

periodic boundary condition of period 2N . Specifically, for any u ∈ CN , let ū ∈ C2N be

its odd extension as shown in Fig.A.1. To solve the Helmholtz equation Tu− λu = g, we

start with the given g ∈ CN , then follow these steps,

1. Extend g into ḡ ∈ C2N .

2. Solve T 2N ū− λū = ḡ with the periodic boundary method.

3. Extract u from ū.

For the regular grid with N points, we need to solve this system of N + 1 equations,

Tun − λun = gn for n = 1, . . . , N − 1

u0 = 0

uN = 0

(A.14)

It is tempting to treat u as an N -periodic data. However, we won’t be able to apply our

algorithm from the periodic boundary case because we do not know the value of g0. Thus,

we again resort to oddly extending u to ū ∈ C2N , this time by u2N−n = −un. This gives

us the values of all ḡn. In particular, ḡ0 = ḡN = 0 since T 2N ū− λū = 0 at these points.

If λ = 0, one must care to correctly set DFT0 ū to satisfy the homogeneous bound-

ary condition. The correct choice is DFT0 ū = 0. We note, however, that the biofilm

simulation never make use of this case.
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Homogeneous Neumann boundary

The homogeneous Neumann boundary condition can be handled similarly to the ho-

mogeneous Dirichlet boundary case, but using the even extension. On the staggered grid,

the Neumann condition can be satisfied to the second order at the left boundary by (u0 −

u−1)/h = 0. Like before, thisN+1 system of equations is equivalent to using the even ex-

tension on C2N . On the regular grid, the Neumann condition can be satisfied to the second

order at the left boundary by (u1− u−1)/(2h) = 0. We can again use the even extension to

C2N . Unlike the regular grid Dirichlet case, the values for g0 and gN must be provided as

inputs.

When λ = 0, we have the Poisson equation Tu = g, which needs to satisfy the discrete

analogue of the divergence theorem,

N−1∑
n=0

gn =
N−1∑
n=0

Tnu =
N−1∑
n=0

1
h2 [(un+1 − un)− (un − un−1)] (A.15)

= 1
h2 [(uN − uN−1)− (u0 − u−1)] = 0 (A.16)

This is a constrain on the input g. It is the user’s duty to make sure that the input satisfies

this condition. The biofilm code faces this situation while solving the pressure Poisson

equation (3.4). On the staggered grid, we have gn = (∇ · v)n = vn+ 1
2
− vn− 1

2
. Thus,∑N−1

n=0 gn = vN− 1
2
−v− 1

2
= 0 as the result of either the periodicity of v, or the homogeneous

Dirichlet condition in v’s momentum equations. Therefore, our input satisfies the discrete

divergence theorem.

Homogeneous mixed boundary

Take as an example the problem with the Dirichlet condition prescribed on the left

boundary, and Neumann on the right. We apply the odd extension on the left boundary, and

the even extension on the right. This reduces the problem to that of the periodic boundary

condition in C4N .
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Quadrupling the domain seems like a waste of computations. This is the price we pay

for expressing our data in the FFT frequency basis. Our example of the mixed boundary

condition problem on the regular grid has the eigenmodes uk for k = 0, 1, . . . N − 1 where

uki = sin( i(2k−1)π
2N ). To capture all these modes, one needs to perform FFT on the domain

of size 4N .

Since the data we deal with are real-valued, and the extension step yields odd or even

symmetries, we can exploit these structures in the data to speed up the calculation by using

a discrete sine transform (DST), discrete cosine transform (DCT), or real-to-complex FFT.

At the time of writing, there is no publicly available DCT or DST package for CUDA, so

we use the FFT provided by the CUFFT package. The package is highly optimized by

Nvidia, and is likely faster than any DST/DCT package we might implement.

Nonhomogeneous boundary

Nonhomogeneous Dirichlet or Neumann boundary condition problem can be converted

into a homogeneous boundary problem. We give a concrete example, where the left bound-

ary is prescribed the Dirichlet condition u(0), while the right boundary is prescribed the

Neumann condition u′(1). Start with the discrete Helmholtz equations,

Tnu− λun = gn

uL = u(0)

u′R = u′(1)

(A.17)

where uL denote an extrapolation of un to the left boundary location. For the staggered

grid, one might use uL := 3
2u0 − 1

2u1. On the regular grid, one can simply use uL := u0.

Similarly, u′R denotes the discretization of u′ at the right boundary.

Let xn denote the position of data point un. Write un = ũn + ü(xn), where ü is

a function that satisfies the boundary conditions, ü(0) = u(0) and ü′(R) = u(1). For
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example, one may choose ü(x) = u(0) + u′(1)x. We then have,

Tnũ+∇2ü(xn)− λ(ũn + ü(xn)) = gn

ũL + ü(0) = u(0)

ũ′R + ü′(1) = u′(1)

(A.18)

Since ü satisfies the boundary conditions, the system becomes,

Tnũ− λũ = gn + λü(xn)−∇2ü(xn)

ũL = 0

ũ′R = 0

(A.19)

Thus, we have reduced the nonhomogeneous boundary condition problem into a homoge-

neous boundary problem.

The extra function ü can often be chosen as a linear function, thus ∇2ü = 0. This

reduces the required computations. The only exception is when both boundaries have the

Neumann condition, in which case ü can be a parabola.

A.2 TWO AND THREE DIMENSIONS

We can extend the aforementioned method to two and three dimensions. For example,

in two dimension, (A.6) becomes,

(DFTj,k u) = (DFTj,k g)/(DFTj,k t− λ) (A.20)

where DFTj,k denotes the two-dimensional DFT.

Periodic boundary condition is trivial to handle. Homogeneous boundary conditions

remain homogeneous, which we then solve by the odd/even extension method. It is also

easy to handle constant boundary conditions in one direction, such as u(y = 0) = const1

and u′(y = N) = const2, by using an extra function ü like in the 1-D case. A more general

boundary condition requires a more detailed handling.
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A.3 VERIFICATION

We verify the code by performing grid refinements with forcing terms. Start with arbi-

trary twice differentiable functions A,B,C ∈ C2(R4). For example,

A(t, x, y, z) = sin(t2)y2(1− y)2 sin(2πz)

B(t, x, y, z) = sin(t)y(1− y)

C(t, x, y, z) = sin(2πx)y2(1− y)2.

(A.21)

The tuple (A,B,C) forms a 3-D vector field, thus its curl is divergence free. We use this

curl as our velocity v. We choose (A,B,C) such that v obeys our boundary conditions:

periodic in x, z, wall at y = 0, and shear at y = 1. We algebraically compute the force

term, then use it as the input for the solver. The solver’s output is compared to the exact

solution v.

We run one test with v = curl(A, 0, 0), which is a 2-dimensional flow in the y, z-

plane. If the temporal term is too flat, the error due to time step size ∆t can be too small to

determine its temporal convergence behavior. The oscillation provided by the term sin(t2)

is reasonably demanding.

We also run a refinement test on a full 3-dimensional flow v = curl(A,B,C). The

refinement results in Table A.1 and A.2 show the second order convergence rate in both

space and time. The observed reduction rate decreases at the end of the temporal refinement

table because the spatial truncation error starts to dominate. Vice versa.

Note that this refinement result is for flows with a constant viscosity. In the presence

of a biofilm, the viscosity varies spatially by a factor of 105. We use a modified numerical

scheme described in Sec.3.2, which yields a different refinement result as shown in Sec.3.6.
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v = curl(A, 0, 0) v = curl(A,B,C)
N ‖err‖2 rate ‖err‖∞ rate ‖err‖2 rate ‖err‖∞ rate
2 5e-17 – 10e-17 – 6e-17 – 2e-16 –
4 36.40e-3 – 66.98e-3 – 29.75e-2 – 111.78e-3 –
8 9.21e-3 3.95 21.39e-3 3.13 7.37e-3 4.04 28.74e-3 3.89

16 2.38e-3 3.87 5.73e-3 3.74 1.90e-3 3.89 7.65e-3 3.75
32 .60e-3 3.95 1.46e-3 3.93 .48e-4 3.95 1.94e-3 3.94
64 .15e-3 3.99 .37e-3 3.98 .12e-3 3.99 .49e-3 3.99

128 37.83e-6 4.00 91.65e-6 4.00 30.15e-6 4.00 .12e-3 4.00
256* 9.45e-6 4.00 22.90e-6 4.00 7.78e-6 3.88 31.41e-6 3.88
512 2.36e-6 4.01 5.70e-6 4.02

1024 .60e-6 3.94 1.64e-6 3.48

Table A.1: Spatial refinement of the Navier-Stokes solver on N2 and N3 grids with ∆t =
1/1024, t0 = 1 sec, tend = 4. The extremely small error at N = 2 is due to the symmetry
in our problem. At N = 1024, the temporal truncation error starts to be significant. Note
(*): For the 3-D problem, the maximum grid size is 2523.

v = curl(A, 0, 0) on 10242 grid v = curl(A,B,C) on 2523 grid
∆t ‖err‖2 rate ‖err‖∞ rate ‖err‖2 rate ‖err‖∞ rate
1/2 19.87e-3 – 60.65e-3 – 11.51e-3 – 60.73e-3 –
1/4 7.65e-3 2.60 40.00e-3 1.52 4.48e-3 2.57 40.14e-3 1.51
1/8 2.31e-3 3.32 12.54e-3 3.19 1.35e-3 3.32 12.58e-3 3.19

1/16 .59e-3 3.90 3.94e-3 3.18 .35e-3 3.90 3.94e-3 3.19
1/32 .15e-3 3.91 1.06e-3 3.71 88.08e-6 3.92 1.06e-3 3.72
1/64 38.15e-6 3.97 .27e-3 3.91 23.01e-6 3.83 .27e-3 3.94

1/128 9.54e-6 4.00 68.14e-6 3.98 9.26e-6 2.49 70.44e-6 3.82
1/256 2.42e-6 3.95 16.92e-6 4.03 7.82e-6 1.18 33.70e-6 2.09
1/512 .81e-6 3.00 4.25e-6 3.98 7.77e-6 1.01 31.34e-6 1.08

1/1024 .60e-6 1.35 1.64e-6 2.60 7.78e-6 1.00 31.41e-6 1.00
1/2048 .59e-6 1.01 1.43e-6 1.15

Table A.2: Temporal refinement of the Navier-Stokes solver with t0 = 1 sec and tend = 4.
The grid size is 10242 for the 2-D problem and 2523 for the 3-D problem. Errors in the last
few lines are dominated by the spatial truncation errors.
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APPENDIX B

GRID REFINEMENT ANALYSIS

Given the limitation of our computing capacity, we currently can compute up to only

about 2403 grid points for the viscoelastic model, and 2563 grid points for the viscous model

in 3-D. This poses a challenge for us to conduct an extensive 3-D spatial refinement test. If

we refine the mesh by halving the grid sizes, then the coarse grids might be too coarse to

show a clear order of convergence. We thus discuss a practical testing methodology in this

appendix.

B.1 CONVERGENCE RATE

When an exact solution is known, performing a grid refinement analysis is trivial. Say

we want to compute a solution u of an equation system using a numerical scheme of spatial

order p. Let u0 be the exact solution, and uh be the computed result at grid spacing h. We

have,

uh = u0 + εh where εh = Chp + higher order terms. (B.1)

Thus log εh ≈ p log(h) + C. We can plot log εh against log h and use its slope as the

observed order p. If we compute u at grid spacings h1 and h2, then

p ≈ log((uh2 − u0)/(uh1 − u0))
log(h2/h1) . (B.2)

When the exact solution is not available, however, we compute u at three grid spacings

h1 < h2 < h3. We can use the solution obtained at the mesh size h1 as the reference

solution, assuming uh1 ≈ u0, then applying the previous formula using h2 and h3 yields

a p. However, this can yield a misleading result. For example, assume that we have a
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first order scheme and a numerical solution uh = u0 + Ch, and use the grid spacings

h1, h2, h3 = 1/64, 1/128, 1/256. Going from u1/64 to u1/128, the observed error will

reduce by 3 folds: uh2−uh3
uh1−uh3

= εh2−εh3
εh1−εh3

= ( 1
64 −

1
256)/( 1

128 −
1

256) = 3. The rate formula

yields p = log 3
log 2 = 1.58, which overstates the true convergence rate p = 1.

Let’s start over from (B.1). If the grid spacings h1 < h2 < h3 form a geometric

progression (r := h3/h2 = h2/h1), then we have,

ε32

ε21
:= uh3 − uh2

uh2 − uh1

≈ C(hp3 − hp2)
C(hp2 − hp1) =

(
h2

h1

)p (h3
h2

)p − 1
(h2
h1

)p − 1
=
(
h2

h1

)p
= rp. (B.3)

Thus,

p ≈ log(ε32/ε21)
log(r) = log((uh3 − uh2)/(uh2 − uh1))

log(h2/h1) . (B.4)

Comparing this to (B.2), the moral is: in order to compute the convergence rate when the

exact solution is not known, the results should not be compared to the finest grid. It should

be compared to the next grid size. This formula yields the accurate rate for the above

example.

B.2 GLOBAL ERROR

In the finite difference method (FDM), a grid Ωh consists of M points. For uniform

grids, any reasonable definition of ‖·‖k,Ωh agrees with the following definition up to the

second order,

‖f‖k,Ωh =
 ∑
x∈Ωh

(ω(x)f(x))k
1/k

(B.5)

where is ω(x) the weight of each point in FDM. For a uniform grid, we typically have

ω(x) = hdimension, perhaps with a factor of 1
2 ,

1
4 or 1

8 for points on the boundaries.

For each x ∈ Ωh, we have the truncation error estimate uh(x) = u0(x)+C(x)hp+ · · · .
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The local (pointwise) errors (uh − u0)(x) and the global errors ‖uh − u0‖k,Ωh are related,

‖uh3 − uh2‖k,Ωh
‖uh2 − uh1‖k,Ωh

≈

(∑
x∈Ωh (ω(x)C(x)(hp3 − hp2))k

)1/k

(∑
x∈Ωh (ω(x)C(x)(hp2 − hp1))k

)1/k (B.6)

=
‖C‖k,Ωh (hp3 − hp2)
‖C‖k,Ωh (hp2 − hp1) = (hp3 − hp2)

(hp2 − hp1) = rp. (B.7)

This formula for the global convergence rate is the same as the one for local convergence

(B.2). One might even say that this should be obvious, since we can consider ‖uh − u0‖k as

just another scalar value. It is worth noting that ‖C‖k,Ωh is grid dependent. Back to the ex-

ample h1, h2, h3 = 1/64, 1/128, 1/256. It is often convenient to compute
∥∥∥u1/64 − u1/128

∥∥∥
on the 1/64 grid and compute

∥∥∥u1/128 − u1/256

∥∥∥ on the 1/128 grid. However, this will in-

troduce a small error in the refinement result since the value ‖C‖Ω1/64
/ ‖C‖Ω1/128

in (B.7)

is not exactly one. The problem subsides at very fine grids, as ‖C‖k,Ωh converges to the

continuum ‖C‖k.

If we consider the next higher order term, we have uh(x) = u0(x)+C(x)hp+D(x)hq+

· · · . Thus,

‖uh3 − uh2‖
‖uh2 − uh1‖

≈ ‖C(hp3 − hp2) +D(hq3 − hq2)‖
‖C(hp2 − hp1) +D(hq2 − hq1)‖ = ‖C +D((hq3 − hq2)/(hp3 − hp2))‖ (hp3 − hp2)

‖C +D((hq2 − hq1)/(hp2 − hp1))‖ (hp2 − hp1)

Assuming r := h3/h2 = h2/h1, we get,

‖uh3 − uh2‖
‖uh2 − uh1‖

= ‖C +Drq−p(rq − 1)/(rp − 1)‖
‖C +D(rq − 1)/(rp − 1)‖ rp

The two norms no longer cancel exactly. Thus we do not have a nice formula for the

convergence order.

B.3 NONCONSTANT REFINEMENT FACTORS

One occasionally needs to perform a mesh refinement on grid spacings h1 < h2 < h3

which do not form a geometric series. Let rij = hi/hj . We can solve one of the following

equations for p,

ε31

ε21
:= uh3 − uh1

uh2 − uh1

≈ hp3 − h
p
1

hp2 − h
p
1

=
(h3
h1

)p − 1
(h2
h1

)p − 1
= rp31 − 1
rp21 − 1 (B.8)
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or
ε32

ε21
:= uh3 − uh2

uh2 − uh1

≈ hp3 − h
p
2

hp2 − h
p
1

=
(
h2

h1

)p (h3
h2

)p − 1
(h2
h1

)p − 1
= rp21

rp32 − 1
rp21 − 1 . (B.9)

The solution p exists for (B.8) iff ε31/ε21 > 1 and is positive iff ε31/ε21 > log(h3
h1

)/ log(h2
h1

) =

logr21 r31. The solution for (B.9) exists iff ε32/ε21 > 0, and is positive iff ε32/ε21 >

logr21 r32. Among these two formula, the latter one is more prevalent in CFD literature.

The CFD community has worked out a more advanced grid refinement methodology

based on Richardson extrapolation (RE) and Grid Convergence Index (GCI). Some useful

references can be found in [30] [6] [60] [55].
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